K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2023

B= \(\dfrac{2023}{2-x}\) biểu thức B xác định ⇔ \(2-x\) \(\ne\) 0; \(x\ne\) 2

Kết luận biểu thức B xác định khi và chỉ khi \(x\) ≠ 2

29 tháng 10 2018

Đặt \(A=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)

\(A=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)

\(A=\frac{a-b}{\sqrt{a-b}.\sqrt{a+b}}\)

\(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}\)

Với \(a=3b\) ta có : \(A=\frac{\sqrt{a-b}}{\sqrt{a+b}}=\frac{\sqrt{3b-b}}{\sqrt{3b+b}}=\frac{\sqrt{2b}}{\sqrt{4b}}=\frac{\sqrt{2}}{2}\)

Chúc bạn học tốt ~ 

29 tháng 10 2018

mn làm giúp mk vs

10 tháng 7 2016

\(\sqrt{\frac{x-2}{x+3}}\) xác định

<=> \(\frac{x-2}{x+3}\ge0\)

<=> \(x-2\ge0\)

<=> \(x\ge2\)

Vậy với mọi \(x\ge2\)thì biểu thức xác định.

10 tháng 7 2016

Biểu thức xác định khi:

\(\hept{\begin{cases}x+3\ne0\\\frac{x-2}{x+3}\ge0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ge2\\x< -3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge2\\x< -3\end{cases}}\)

10 tháng 7 2016

Để biểu thức trên có nghĩa thì:

2+x>0 và 5-x >0 hoặc 2+x<0 và 5-x<0

<=>x>-2 và x<5 hoặc x<-2 và x>5

<=>-2<x<5

Vậy để biểu thức xác định thì -2 < x < 5

25 tháng 11 2015

giả sử nghiệm chung là x=c    => xQ(x)-P(x)=x-1

                                           => cQ(c)-P(x)=c-1

vì x=c là nghiệm của Q(x) và P(x) =>P(c)=Q(c)=0

                                                 => c-1=0 =>c=1

khi c=1 => P(1)=Q(1)=a+2  =>a=-2

2 tháng 12 2015

b) (1-1/m)2 + (1/m)2 =5 => t2 -2t +1 +t2 =5 => t2 -t -2 =0 => t = -1 ; t =2

+ t =-1 => m =-1 

+ t =2 => m =1/2

2 tháng 12 2015

1) khi \(m\ne0;1\) thì hệ pt có nghiệm duy nhất: \(x=\frac{m-1}{m}\) và \(y=\frac{1}{m}\)

ta có : \(x=1-\frac{1}{m}\Leftrightarrow x=1-y\Leftrightarrow y=-x+1\)

vậy điểm M luôn luôn thuộc dt có hệ pt: \(y=-x+1\) (dpcm)

2:

a: Thay x=1 vào (P), ta được:

\(y=\dfrac{1^2}{2}=\dfrac{1}{2}\)

Thay x=1 và y=1/2 vào (D), ta được:

\(m-1=\dfrac{1}{2}\)

hay m=3/2

b: Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2+x-m=0\)

\(\text{Δ}=1^2-4\cdot\dfrac{1}{2}\cdot\left(-m\right)=2m+1\)

Để (D) cắt (P) tại hai điểm phân biệt thì 2m+1>0

hay m>-1/2

c: Để (D) tiếp xúc với (P) thì 2m+1=0

hay m=-1/2