\(\dfrac{3sinx-2cosx}{5cos+7sinx}\). Gía trị M bằng bao nhiêu?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2022

\(M=\dfrac{3sinx-2cosx}{5cosx+7sinx}\)

\(tanx=\dfrac{sinx}{cosx}\)

\(\Rightarrow M=\dfrac{3sinx}{\dfrac{cosx}{\dfrac{5cosx}{cosx}}}-\dfrac{2cosx}{\dfrac{cosx}{\dfrac{7sinx}{cosx}}}\)

\(M=\dfrac{3tanx-2}{5+7tanx}\)

\(M=\dfrac{3.2-2}{5+7.2}\)

\(M=\dfrac{4}{19}\)

18 tháng 7 2020

ĐK: x \(\ne\frac{\pi}{2}+k\pi\)

pt <=> \(3\sin x.\cos x+2\cos^2x=3\cos x+3\sin x-1\)

<=> \(3\sin x\left(\cos x-1\right)+\left(2\cos x-1\right)\left(\cos x-1\right)=0\)

<=> \(\left(\cos x-1\right)\left(3\sin+2\cos x-1\right)=0\)ok. Tự làm tiếp nha!

28 tháng 3 2022

\(A=\dfrac{\dfrac{4sin\alpha}{sin\alpha}+\dfrac{5cos\alpha}{sin\alpha}}{\dfrac{2sin\alpha}{sin\alpha}-\dfrac{3cos\alpha}{sin\alpha}}\)

\(A=\dfrac{4+5cot\alpha}{2-3cot\alpha}\)

Biết cotα=\(\dfrac{1}{2}\) nên ta có:

\(A=\dfrac{4+5\cdot\dfrac{1}{2}}{2-3\cdot\dfrac{1}{2}}\)

\(A=\dfrac{4+\dfrac{5}{2}}{2-\dfrac{3}{2}}\)

A= 13

26 tháng 3 2022

\(\dfrac{4sin\alpha+5cos\alpha}{2sin\alpha-3cos\alpha}=\dfrac{\dfrac{4sin\alpha}{cos\alpha}+\dfrac{5cos\alpha}{cos\alpha}}{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}=\dfrac{4tan\alpha+5}{2tan\alpha-3}\)

Biết \(tan\)=\(\dfrac{1}{3}\) nên ta có:

\(\dfrac{4\times\dfrac{1}{2}+5}{2\times\dfrac{1}{2}-3}=\dfrac{2+5}{2-3}=\dfrac{7}{-2}=\dfrac{-7}{2}\)

NV
16 tháng 4 2019

Đầu tiên bạn cần biết công thức \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

Ta có:

\(\frac{sinx+cosx+cos2x}{1-sin2x+cos2x+2cosx}=\frac{sinx+cosx+cos^2x-sin^2x}{1-2sinx.cosx+2cos^2x-1+2cosx}\)

\(=\frac{sinx+cosx+\left(cosx-sinx\right)\left(cosx+sinx\right)}{2cos^2x-2sinx.cosx+2cosx}=\frac{\left(sinx+cosx\right)\left(cosx-sinx+1\right)}{2cosx\left(cosx-sinx+1\right)}\)

\(=\frac{sinx+cosx}{2cosx}=\frac{sinx}{2cosx}+\frac{cosx}{2cosx}=\frac{1}{2}tanx+\frac{1}{2}\)

NV
29 tháng 5 2020

\(A=\frac{3sinx-4cosx}{cosx+2sinx}=\frac{\frac{3sinx}{cosx}-4}{1+\frac{2sinx}{cosx}}=\frac{3tanx-4}{1+2tanx}=\frac{3.5-4}{1+2.5}=...\)

\(B=\frac{\frac{sinx}{cos^3x}+\frac{sin^3x}{cos^3x}}{\frac{3cos^3x}{cos^3x}+\frac{cosx}{cos^3x}}=\frac{tanx.\frac{1}{cos^2x}+tan^3x}{3+\frac{1}{cos^2x}}=\frac{tanx\left(1+tan^2x\right)+tan^3x}{3+\left(1+tan^2x\right)}=\frac{5\left(1+5^2\right)+5^3}{3+1+5^2}=...\)

29 tháng 5 2020

thankiuu bn <333

NV
27 tháng 4 2020

Bài 1:

\(A=\left(1+sinx\right)\left(1-sinx\right)tan^2x=\left(1-sin^2x\right).\frac{sin^2x}{cos^2x}=cos^2x.\frac{sin^2x}{cos^2x}=cos^2x\)

\(B=cot^2x-sin^2x.cot^2x+1-cot^2x=1-sin^2x.\frac{cos^2x}{sin^2x}=1-cos^2x=sin^2x\)

\(C=tan^2x+2+\frac{1}{tan^2x}-\left(tan^2x-2+\frac{1}{tan^2x}\right)=2+2=4\)

Bài 2:

Đề yêu cầu tính giá trị lượng giác nào bạn? sin?cos?tan?cot?

Không hỏi thì làm sao mà biết cần tính gì

27 tháng 4 2020

tính giá trị lượng giác còn lại của góc \(\alpha\)

12 tháng 5 2017

Giả sử biểu thức xác định:
\(\dfrac{tanx-sinx}{sin^3x}=\dfrac{\dfrac{sinx}{cosx}-sinx}{sin^3x}=\dfrac{sinx-cosxsinx}{cosxsin^3x}\)
\(=\dfrac{sinx\left(1-cosx\right)}{sin^3xcosx}\)\(=\dfrac{1-cosx}{cosxsin^2x}=\dfrac{1-cosx}{cosx\left(1-cos^2x\right)}=\dfrac{1}{cosx\left(1+cosx\right)}\).

12 tháng 5 2017

cam on nhieu a

NV
31 tháng 5 2020

\(\left(tanx+cotx\right)^2=m^2\)

\(\Leftrightarrow tan^2x+cot^2x+2=m^2\)

\(\Leftrightarrow tan^2x+cot^2x=m^2-2\)

\(\Rightarrow\left(tan^2x+cot^2x\right)^2=\left(m^2-2\right)^2\)

\(\Leftrightarrow tan^4x+cot^4x+2=m^4-4m^2+4\)

\(\Leftrightarrow tan^4x+cot^4x=m^4-4m^2+2\)

\(\Rightarrow a+b+c+d+e=1+0-4+0+2=-1\)