K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 5 2020

\(A=\frac{3sinx-4cosx}{cosx+2sinx}=\frac{\frac{3sinx}{cosx}-4}{1+\frac{2sinx}{cosx}}=\frac{3tanx-4}{1+2tanx}=\frac{3.5-4}{1+2.5}=...\)

\(B=\frac{\frac{sinx}{cos^3x}+\frac{sin^3x}{cos^3x}}{\frac{3cos^3x}{cos^3x}+\frac{cosx}{cos^3x}}=\frac{tanx.\frac{1}{cos^2x}+tan^3x}{3+\frac{1}{cos^2x}}=\frac{tanx\left(1+tan^2x\right)+tan^3x}{3+\left(1+tan^2x\right)}=\frac{5\left(1+5^2\right)+5^3}{3+1+5^2}=...\)

29 tháng 5 2020

thankiuu bn <333

NV
25 tháng 5 2020

\(B=\frac{sinx+cosx}{2sinx+cosx}=\frac{\frac{sinx}{cosx}+\frac{cosx}{cosx}}{\frac{2sinx}{cosx}+\frac{cosx}{cosx}}=\frac{tanx+1}{2tanx+1}=\frac{3+1}{2.3+1}=...\)

\(C=\frac{\frac{4sin^3x}{cos^3x}+\frac{cos^3x}{cos^3x}}{\frac{sinx}{cos^3x}+\frac{3cosx}{cos^3x}}=\frac{4tan^3a+1}{tanx.\frac{1}{cos^2x}+3.\frac{1}{cos^2x}}=\frac{4tan^3x+1}{tanx\left(1+tan^2x\right)+3.\left(1+tan^2x\right)}\)

\(=\frac{4.3^3+1}{3\left(1+3^2\right)+3\left(1+3^2\right)}=...\)

NV
29 tháng 5 2020

\(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=\frac{cos^2x\left(1-sin^2x\right)}{sin^2x}\)

\(=cos^2x.\left(\frac{cos^2x}{sin^2x}\right)=cot^2x.cos^2x\)

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{\left(cosx-sinx\right)\left(cosx+sinx\right)}\)

\(=\frac{cos^2x+sin^2x+2sinx.cosx-\left(cos^2x+sin^2x-2sinx.cosx\right)}{cos^2x-sin^2x}=\frac{4sinx.cosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

\(\frac{sin4x+cos2x}{1-cos4x+sin2x}=\frac{2sin2x.cos2x+cos2x}{1-\left(1-2sin^22x\right)+sin2x}=\frac{cos2x\left(2sin2x+1\right)}{sin2x\left(2sin2x+1\right)}=\frac{cos2x}{sin2x}=cot2x\)

\(A=sin^2x\left(sinx+cosx\right)+cos^2x\left(sinx+cosx\right)\)

\(=\left(sin^2x+cos^2x\right)\left(sinx+cosx\right)=sinx+cosx\)

\(B=\frac{sinx}{cosx}\left(\frac{1+cos^2x-sin^2x}{sinx}\right)=\frac{sinx}{cosx}\left(\frac{2cos^2x}{sinx}\right)=2cosx\)

NV
7 tháng 11 2019

a/ \(cosx>0\Rightarrow cosx=\sqrt{1-sin^2x}=\frac{4}{5}\)

\(\Rightarrow tanx=-\frac{3}{4}\Rightarrow A=\frac{129}{20}\)

b/ \(B=\frac{5sinx+3cosx}{3cosx-2sinx}=\frac{\frac{5sinx}{sinx}+\frac{3cosx}{sinx}}{\frac{3cosx}{sinx}-\frac{2sinx}{sinx}}=\frac{5+3cotx}{3cotx-2}=\frac{5+9}{9-2}\)

c/ \(C=\frac{sinx.cosx\left(cotx-2tanx\right)}{sinx.cosx\left(5cotx+tanx\right)}=\frac{cos^2x-2sin^2x}{5cos^2x+sin^2x}=\frac{cos^2x-2\left(1-cos^2x\right)}{5cos^2x+1-cos^2x}=\frac{3cos^2x-2}{4cos^2x+1}=...\)

d/ Không dịch được đề, ko biết mẫu số bên trái nó đến đâu cả

5 tháng 11 2019

đề bài đầy đủ: rút gọn các biểu thức lượng giác sau trên điều kiện xác định của chúng:

NV
6 tháng 11 2019

\(\frac{sin^2x}{cosx+cosx.\frac{sinx}{cosx}}-\frac{cos^2x}{sinx+sinx.\frac{cosx}{sinx}}=\frac{sin^2x}{sinx+cosx}-\frac{cos^2x}{sinx+cosx}=\frac{sin^2x-cos^2x}{sinx+cosx}\)

\(=\frac{\left(sinx+cosx\right)\left(sinx-cosx\right)}{sinx+cosx}=sinx-cosx\)

\(\left(\frac{sinx}{cosx}+\frac{cosx}{1+sinx}\right)\left(\frac{cosx}{sinx}+\frac{sinx}{1+cosx}\right)=\left(\frac{sinx+sin^2x+cos^2x}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}\right)\)

\(=\left(\frac{sinx+1}{cosx\left(1+sinx\right)}\right)\left(\frac{cosx+1}{sinx\left(1+cosx\right)}\right)=\frac{1}{sinx.cosx}\)

NV
31 tháng 5 2020

\(\frac{1+2sinx.cosx}{sin^2x-cos^2x}=\frac{sin^2x+cos^2x+2sinx.cosx}{\left(sinx-cosx\right)\left(sinx+cosx\right)}\)

\(=\frac{\left(sinx+cosx\right)^2}{\left(sinx-cosx\right)\left(sinx+cosx\right)}=\frac{sinx+cosx}{sinx-cosx}\)

\(=\frac{\frac{sinx}{cosx}+\frac{cosx}{cosx}}{\frac{sinx}{cosx}-\frac{cosx}{cosx}}=\frac{tanx+1}{tanx-1}\)

NV
7 tháng 5 2019

\(\pi< x< \frac{3\pi}{2}\Rightarrow sinx< 0;cosx< 0;tanx>0;cotx>0\)

\(tanx-3cotx=6\Leftrightarrow tanx-\frac{3}{tanx}=6\)

\(\Leftrightarrow tan^2x-6tanx-3=0\Rightarrow\left[{}\begin{matrix}tanx=3+2\sqrt{3}\\tanx=3-2\sqrt{3}< 0\left(l\right)\end{matrix}\right.\)

\(\frac{1}{cos^2x}=1+tan^2x\Rightarrow cos^2x=\frac{1}{1+tan^2x}\Rightarrow cosx=\frac{-1}{\sqrt{1+tan^2x}}\) (do \(cosx< 0\))

\(\Rightarrow cosx=\frac{-1}{\sqrt{22+12\sqrt{3}}}\Rightarrow sinx=-\sqrt{1-cos^2x}=-\sqrt{\frac{15+6\sqrt{3}}{26}}\)

\(cotx=\frac{1}{tanx}=\frac{1}{3+2\sqrt{3}}\)

Số xấu dữ dội, bạn tự thay vào kết quả :(

12 tháng 5 2017

Giả sử biểu thức xác định:
\(\dfrac{tanx-sinx}{sin^3x}=\dfrac{\dfrac{sinx}{cosx}-sinx}{sin^3x}=\dfrac{sinx-cosxsinx}{cosxsin^3x}\)
\(=\dfrac{sinx\left(1-cosx\right)}{sin^3xcosx}\)\(=\dfrac{1-cosx}{cosxsin^2x}=\dfrac{1-cosx}{cosx\left(1-cos^2x\right)}=\dfrac{1}{cosx\left(1+cosx\right)}\).

12 tháng 5 2017

cam on nhieu a