Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai hay nhiều số có ƯCLN bằng 1 gọi là các số nguyên tố cùng nhau. ... Nếu chia a và b cho d thì thương của chúng là những số nguyên tố cùng nhau. *Mối quan hệ đặc biệt giữa ƯCLN của 2 số a, b (kí hiệu (a,b)) và BCNN của 2 số a, b (kí hiệu [a, b]) với tích của 2 số a và b là: a
Trong một số trường hợp, có thể sử dụng mối quan hệ đặc biệt giữa ƯCLN, BCNN và tích của hai số nguyên dương a, b, đó là : ab = (a, b).[a, b], trong đó (a, b) là ƯCLN và [a, b] là BCNN của a và b. Việc chứng minh hệ thức này không khó : Theo định nghĩa ƯCLN, gọi d = (a, b) => a = md ; b = nd với m, n thuộc Z+ ; (m, n) = 1 (*) Từ (*) => ab = mnd2 ; [a, b] = mnd => (a, b).[a, b] = d.(mnd) = mnd2 = ab=> ab = (a, b).[a, b] .
ƯCLN của 2 hay nhiều số là số lớn nhất trog tập hợp ƯC của các số đó
BCNN của 2 hay nhiều số là số bé nhất trog tập hợp BC của các số đó
ƯCLN CỦA HAI HAY NHIỀU SỐ LÀ SỐ LỚN NHẤT TRONG TẬP HỢP ƯỚC CHUNG CỦ NHỮNG SỐ ĐÓ .
BCNN CỦA HAI HAY NHIỀU SỐ LÀ SỐ NHỎ NHẤT CỦA TẬP HỢP BỘI CHUNG CỦA NHỮNG SỐ ĐÓ .
CHÚC BẠN HỌC TỐT NHA !!!!!!!!!!
Từ dữ liệu đề bài cho, ta có : + Vì ƯCLN(a, b) = 15, nên ắt tồn tại các số tự nhiên m và n khác 0, sao cho: a = 15m; b = 15n (1) và ƯCLN(m, n) = 1 (2) + Vì BCNN(a, b) = 300, nên theo trên, ta suy ra : + Vì a + 15 = b, nên theo trên, ta suy ra :
Trong các trường hợp thoả mãn các điều kiện (2) và (3), thì chỉ có trường hợp : m = 4, n = 5 là thoả mãn điều kiện (4). Vậy với m = 4, n = 5, ta được các số phải tìm là : a = 15 . 4 = 60; b = 15 . 5 = 75 |
Vì 1995 chia hết cho a và 1998 chia hết cho a ⇒a = 1 hoặc a = 3
từ đó b = 1995 ; c = 1998 hoặc b = 665 ; c = 666
Chúc bạn học tốt
vì 1995 chia hết cho a và 1998 chia hết cho a => a = 1 hoặc a = 3
Từ ₫ó : b = 1995 , c =1998 hoặc b=665 , c=666
45 = 3.3.5
204=2.2.3.17
126=2.7.9
ƯCLN= không có
BCNN=2.2.3.3.5.7.9.17=345780
=8 tick tớ nhé tớ tick cậu rồi
tick mình rồi mk tick cho