Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AIB = HBC (2 góc đồng vị, AI // BH)
mà ABH = HBC (BH là tia phân giác của ABC)
=> AIB = ABH
mà ABH = BAI (2 góc so le trong, AI // BH)
=> AIB = BAI
=> Tam giác BAI cân tại B
mà BJ là tia phân giác của ABI của tam giác BAI cân tại B
=> BJ là đường cao của tam giác BAI
=> BJ _I_ AI
a) Ta có AI // BH => ^AIB = ^HBC và ^BAI = ^ABH (so le trong).
Mà ^HBC = ^ABH (BH là tia phân giác ^ABC) => ^AIB = ^BAI.
b) Bạn xét hai tam giác ABJ và IBJ.
(Nếu chưa học tam giác bằng nhau thì chứng minh như sau:
Ta thấy BJ và BH là tia phân giác của hai góc kề bù nên ^JBH = 90 độ.
Do AI // BH nên ^BJI = ^JBH = 90 độ => BJ vuông góc với AI.)
Cũng có thể giải cách này bạn :
A C B H J I 1 2 3 1 1
a) Vì AI // BH => cặp góc so le trong bằng nhau
hay \(\widehat{A1}\) = \(\widehat{B2}\)
mà \(B2\) = \(\widehat{B1}\) ( BH là tia phân giác)
Vì AI // BH => cặp góc đồng vị bằng nhau
hay \(\widehat{B1}\) = \(\widehat{I1}\)
=> \(\widehat{A1}\)= \(\widehat{I1}\)
b) Vì BH là tia phân giác của \(\widehat{ABC}\)
=> \(\widehat{B2}\) = \(\widehat{B1}\) = \(\frac{\widehat{ABC}}{2}\)
Vì BJ là tia phân giác của \(\widehat{ABI}\)
=> \(\widehat{B3}\) = \(\widehat{B4}\) = \(\frac{\widehat{ABI}}{2}\)
=> \(\widehat{B2}\) + \(\widehat{B3}\) = \(\frac{\widehat{ABC}}{2}\) + \(\frac{\widehat{ABI}}{2}\)
=> \(\widehat{B2}\) + \(\widehat{B3}\) = \(\frac{\widehat{ABC+}\widehat{ABI}}{2}\)
=> \(\widehat{B2}\) + \(\widehat{B3}\) \(\frac{180^0}{2}\) = \(90^0\) ( Vì \(\widehat{ABC}\) và \(\widehat{ABI}\) là 2 góc kề bù)
hay \(\widehat{HBJ}\) = \(90^0\)
Vậy BJ vuông góc BH
BH // AI ( gt)
BJ vg BH
=> BJ vg AI
b) Vì AC=2AB
AB=BD
=>AC=AD
Xét tam giác ACE và tam giác ADE có:
AC=AD ( chứng minh trên )
^CAE=^EAD ( tính chất phân giác )
AE chung
=> tam giác ACE = tam giác ADE ( c.g.c )
=> ^CEA=^AED ( 2 góc tương ứng )
Mà ^CEA kề bù ^AED
=> ^CEA=^AED=90°
=> AE vuông góc CD
AI và AE là 2 tia trùng nhau
=> AI vuông góc CD
Vì AI vuông góc BM
Mà AI vuông góc CD
<=> BM // CD
Chúc bạn học tốt!
Vì mình không tìm được cách gõ góc nên kí hiệu ^ là góc nhé! Mong bạn thông cảm
1.Vì các tia phân giác của các góc B và C cắt nhau tại I
\(\Rightarrow\)I là giao của các đường phân giác trong tam giác
\(\Rightarrow\)AI là tia phân giác của góc A
1.
Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)
\(\widehat{IDB}=\widehat{IEB}=90^0\)
\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)
BI cạnh huyền chung
⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)
Suy ra: ID = IE (hai cạnh tương ứng) (1)
Xét hai tam giác vuông IEC và IFC, ta có ;
\(\widehat{IEC}=\widehat{IFC}=90^0\)
\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)
CI canh huyền chung
Suy ra: ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)
Suy ra: IE = IF (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IF
Xét hai tam giác vuông IDA và IFA, ta có:
\(\widehat{IDA}=\widehat{IFA}=90^0\)
ID = IF (chứng minh trên)
AI cạnh huyền chung
Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)
Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)
Vậy AI là tia phân giác của \(\widehat{A}\)
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
b: góc IBC=góc HBD
góc ICB=góc KCE
mà góc HBD=góc KCE
nên góc IBC=góc ICB
=>IB=IC
IB+BH=IH
IC+CK=IK
mà IB=IC; BH=CK
nên IK=IH
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AH=AK
AI chung
=>ΔAHI=ΔAKI
=>góc HAI=góc KAI
=>AI là phân giác của góc DAE
c: Xet ΔADE có AH/AD=AK/AE
nên HK//DE
VẼ HÌNH VÀ ÁP DỤNG KIẾN THỨC LỚP 7 í