Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta sẽ đi CM đẳng thức tổng quát:
\((C^1_{2n})^2-(C^2_{2n})^2+(C^3_{2n})^2-....+(C^{2n-1}_{2n})^2-(C^{2n}_{2n})^2=C^n_{2n}+1\) với $n$ lẻ.
Theo nhị thức Newton ta có:
\((x^2-1)^{2n}=C^0_{2n}-C^1_{2n}x^2+C^2_{2n}x^4-....-C^n_{2n}x^{2n}+...+C^{2n}_{2n}x^{4n}\). Trong này, hệ số của $x^{2n}$ là $-C^n_{2n}$
Tiếp tục sử dụng nhị thức Newton:
\((x^2-1)^{2n}=(x+1)^{2n}(x-1)^{2n}=(C^0_{2n}+C^1_{2n}+C^2_{2n}x^2+...+C^{2n}_{2n}x^{2n})(C^0_{2n}x^{2n}-C^1_{2n}x^{2n-1}+C^2_{2n}x^{2n-2}-...+C^{2n}_{2n})\). Trong này, hệ số của $x^{2n}$ là
\((C^0_{2n})^2-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)
Do đó:
\(-C^n_{2n}=(C^0_{2n})^2-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)
\(\Leftrightarrow -C^n_{2n}=1-(C^1_{2n})^2+(C^2_{2n})^2-.....+(C^{2n}_{2n})^2\)
\(\Leftrightarrow (C^1_{2n})^2-(C^2_{2n})^2+...-(C^2_{2n})^2=1+C^n_{2n}\)
Thay $n=1011$ ta có đpcm.
Đề chỗ này có vấn đề:
\(u_n^2+2021u_n-2023u_{n+1}+1\)
Thiếu dấu "="
I.
Do \(\left(u_n\right)\) là cấp số nhân \(\Rightarrow\)\(u_4=u_3.q\Rightarrow q=\dfrac{u_4}{u_3}=\dfrac{10}{3}\)
\(u_3=u_1q^2\Rightarrow u_1=\dfrac{u_3}{q^2}=\dfrac{27}{100}\)
2. Công thức số hạng tổng quát: \(u_n=\dfrac{27}{100}.\left(\dfrac{10}{3}\right)^{n-1}\)
II.
1. \(\lim\limits\dfrac{-3n^2+2n-2022}{3n^2-2022}=\lim\dfrac{-3+\dfrac{2}{n}-\dfrac{2022}{n^2}}{3-\dfrac{2022}{n^2}}=\dfrac{-3+0-0}{3-0}=-1\)
2.
\(\lim\limits_{x\rightarrow2}\dfrac{x^2-5x+6}{x-2}=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x-3\right)}{x-2}=\lim\limits_{x\rightarrow2}\left(x-3\right)=-1\)
\(\Leftrightarrow1-cos2x-\left(m+1\right)sin2x-1+m=0\)
\(\Leftrightarrow cos2x+\left(m+1\right)sin2x=m\)
Theo điều kiện có nghiệm của pt lượng giác bậc nhất:
\(1^2+\left(m+1\right)^2\ge m^2\)
\(\Leftrightarrow2m\ge-2\Rightarrow m\ge-1\)
Có \(2019-\left(-1\right)+1=2021\) giá trị
\(\Leftrightarrow4sin^{2020}x\left(1-2sin^2x\right)=4cos^{2020}x\left(2cos^2x-1\right)+5cos2x=0\)
\(\Leftrightarrow4sin^{2020}x.cos2x=4cos^{2020}x.cos2x+5cos2x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\Rightarrow x=...\\4sin^{2020}x=4cos^{2020}x+5\left(1\right)\end{matrix}\right.\)
Xét (1), ta có \(\left\{{}\begin{matrix}4sin^{2020}x\le4\\4cos^{2020}x+5\ge5\end{matrix}\right.\)
\(\Rightarrow4sin^{2020}x< 4cos^{2020}x+5\) với mọi x
\(\Rightarrow\left(1\right)\) vô nghiệm