K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2020

Không mất tính tổng quát giả sử \(a\ge b\ge c>0\Rightarrow\hept{\begin{cases}b+c\le a+c\le a+b\\\frac{a^a}{b+c}\ge\frac{b^a}{c+a}\ge\frac{c^a}{a+b}\end{cases}}\)

Sử dụng bất đẳng thức Chebyshev cho 2 dãy đơn ngược chiều ta có:

\(VT\left(1\right)=\frac{1}{2\left(a+b+c\right)}\left(\frac{a^a}{b+c}+\frac{b^a}{c+a}+\frac{c^a}{a+b}\right)\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\ge\)

\(\frac{1}{2\left(a+b+c\right)}\cdot3\left[\frac{a^a}{b+c}\left(b+c\right)+\frac{b^a}{c+a}\left(c+a\right)+\frac{c^a}{a+b}\left(a+b\right)\right]=\frac{3\left(a^a+b^a+c^a\right)}{2\left(a+b+c\right)}\)\(=\frac{3}{2}\cdot\frac{a^a+b^a+c^a}{a+b+c}\)

=> đpcm

10 tháng 3 2020

Ta có : \(\left(1+\sqrt{2019}\right)\sqrt{2020-2\sqrt{2019}}\)

\(=\left(1+\sqrt{2019}\right).\sqrt{2019-2\sqrt{2019}+1}\)

\(=\left(1+\sqrt{2019}\right)\sqrt{\left(\sqrt{2019}-1\right)^2}\)

\(=\left(1+\sqrt{2019}\right)\left(\sqrt{2019}-1\right)\)

\(=2019-1=2018\)

4 tháng 8 2017

Bạn ơi bài này của lớp 9 chứ có phải của lớp 8 đâu 

3 tháng 2 2017

I A D B C

Giải

a) góc A + góc B + góc C + góc D = 3600 (tổng các góc trong của tứ giác)

mà góc A = \(\alpha\) ; góc B = 2\(\alpha\) ; góc C bù với góc B

=> góc C = 1800 - góc B = 1800 - 2\(\alpha\)

Vậy góc D = 3600 - (góc A + góc B + góc C) = 1800 - \(\alpha\)

b) góc CID = 1800 - (góc C1 + góc D1) (tổng các góc trong của \(\Delta\)CID)

\(=180^0-\left(\frac{gócC}{2}+\frac{gócD}{2}\right)\)

\(=\frac{360^0-gócC-gócD}{2}\)

\(=\frac{gócA+gócB+gócC+gócD-gócC-gócD}{2}\)

\(=\frac{gócA+gócB}{2}\)

1 tháng 11 2016

mình rất muốn giúp bạn nhưng cuộc sống đẹp ở chỗ là mình học ngu anh văn :v, nên mình xin lỗi

1 tháng 11 2016

bucqua

28 tháng 11 2016

2007 thì phải 

31 tháng 1 2017

\(\frac{a}{a+b}\)>=  \(\frac{a}{a+a}\)= \(\frac{1}{2}\)( vì a + a >= a + b vì a >= b ) 

\(\frac{b}{b+c}\) >= \(\frac{b}{b+b}\)= \(\frac{1}{2}\)( vì b + b >= b + c vì b >= c )

\(\frac{c}{c+a}\)>= \(\frac{c}{c+c}\)  = \(\frac{1}{2}\)( vì c + c >= c + a vì c>=0 )

Từ 3 điều này suy ra

\(\frac{a}{a+b}\)+ \(\frac{b}{b+c}\)+ \(\frac{c}{c+a}\)>=  \(\frac{3}{2}\)

31 tháng 1 2017

dễ dàng c/m (x+y+z)(1/x+1/y+1/z) \(\ge\) 9,dấu "=" khi x=y=z (*)

a/a+b +b/b+c +c/c+a >= 3/2

<=>(a/b+c + 1) + (b/c+a + 1) + (c/a+b + 1) >= 3/2+1+1+1

<=>(a+b+c)/(b+c) + (a+b+c)/(c+a) + (a+b+c)/(a+b) >= 9/2

<=>2(a+b+c)(1/b+c + 1/c+a + 1/a+b) >= 9/2

<=>[(b+c)+(c+a)+(a+b)](1/b+c + 1/c+a + 1/a+b) >= 9/2 (bđt (*))

6 tháng 2 2017

Đặt: a + b = x; b + c = y; c + a = z

Thì ta có: x \(\ge\)\(\ge\)y

Theo đề bài ta có:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{a+b}-\frac{1}{2}+\frac{b}{b+c}-\frac{1}{2}+\frac{c}{c+a}-\frac{1}{2}\ge0\)

\(\Leftrightarrow\frac{a-b}{2\left(a+b\right)}+\frac{b-c}{2\left(b+c\right)}+\frac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\frac{z-y}{2x}+\frac{x-z}{2y}+\frac{y-x}{2z}\ge0\)

\(\Leftrightarrow xy^2+yz^2+zx^2-x^2y-y^2z-z^2x\ge0\)


\(\Leftrightarrow\left(y-x\right)\left(z-y\right)\left(z-x\right)\ge0\)(1)

Mà ta lại có 

\(\hept{\begin{cases}y-x\le0\\z-x\le0\\z-y\ge0\end{cases}}\)nên (1) đúng

\(\Rightarrow\)ĐPCM

Đấu = xảy ra khi x = y = z hay a = b = c

5 tháng 2 2017

Đặt b+c=m

      a+c=n

      a+b=p

=>a+b+c =\(\frac{m+n+p}{2}\) 

a=\(\frac{n+p-m}{2}\) 

b=\(\frac{m+p-n}{2}\) 

c=\(\frac{m+n-p}{2}\) 

=>\(\frac{n+p-m}{2m}+\frac{m+n-p}{2n}+\frac{m+n-p}{2p}\) 

=\(\frac{1}{2}\left(\frac{n}{m}+\frac{m}{n}\right)\) +\(\frac{1}{2}\left(\frac{p}{m}+\frac{m}{p}\right)\) +\(\frac{1}{2}\left(\frac{p}{n}+\frac{n}{p}\right)\) -\(\frac{3}{2}\) \(\ge\) \(\frac{3}{2}\) 

Áp dụng BĐT Cosi cho  2 số \(\frac{n}{m};\frac{m}{n}\)  ta được:

 Từ chứng minh tiếp ....

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

Kẻ đường cao $BH$ của tam giác $ABC$.

\(S_{ABC}=\frac{BH.AC}{2}(1)\)

Theo công thức lượng giác: \(\sin A=\frac{BH}{AB}\Rightarrow BH=\sin A. AB(2)\)

Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin A. AB.AC}{2}=\frac{bc\sin \alpha}{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Hình vẽ:

Violympic toán 8