Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\frac{10^{2002}+2}{3}\)có giá trị nguyên \(\Rightarrow10^{2002}+2\)chia hết cho 3
Ta có: \(10^{2002}+2=10...00+2=100...02\)
Ta thấy tổng các chữ số của \(100...02=1+0+0+...+0+2\)
\(=1+0+2=3\)chia hết cho 3
\(\Rightarrow10^{2002}+2\) chia hết cho 3 \(\Rightarrow\) \(\frac{10^{2002}+2}{3}\) có giá trị nguyên.(đpcm)
b) Để \(\frac{10^{2002}+8}{9}\)có giá trị nguyên \(\Rightarrow10^{2002}+8\)chia hết cho 9
Ta có: \(10^{2002}+8=100..00+8=100...08\)
Ta thấy tổng các chữ số của \(100...08=1+0+0+...+0+9\)
\(=1+0+8=9\)chia hết cho 9
\(\Rightarrow10^{2002}+8\) chia hết cho 9 \(\Rightarrow\) \(\frac{10^{2002}+8}{9}\) có giá trị nguyên.(đpcm)
Ta có:
(10^2002)+2=100000...002 ( 2001 chữ số 0)
có tổng các chữ số là: 1+2+2001.0=3 chia hết cho 3
=>A là số tự nhiên (đpcm)
b) (10^2003)+8=1000...008 (2002 chữ số 0)
có tổng các chữ số là: 1+8+2002.0=9 chia hết cho 9
=> B là số tự nhiên (đpcm)
a) 102002+ 2 = 1000...000 +2 = 1000...002 - có tổng các chữ số là 1 + 0 + 0 + ... + 0 + 0 + 2 = 1 + 2 = 3 chia hết cho 3.
Vậy 102002+2/3 có giá trị là stn
b) Giải tương tự câu a
a,Tổng các chữ số là:1+0+0+..........+0+2=3 chia hết cho 3 nên 102002+2 chia hết cho 3
Vậy \(\frac{10^{2002}+2}{3}\) là số tự nhiên
b,Tổng các chữ số là:1+0+0+............+0+0+8=9 chia hết cho 9 nên 102003+8 chia hết cho 9
Vậy \(\frac{10^{2003}+8}{9}\) là số tự nhiên
a) vì\(10^{2002}\)+2 có tổng các chữ số chia hết cho 3 nên
suy ra phân số \(\frac{10^{2002}+2}{3}\)có giá trị là số tự nhiên
b) vì 10 mũ 2003 + 8 có tổng các chữ số chia hết cho 9 nên
suy ra 10 mũ 2003 + 8 phần 9 có giá trị là số tự nhiên
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)