Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath
Ta có:
\(x^2+x+1=0\) Nhận xét: \(x\ne1\)
Nhân cả hai vế của phương trình trên với \(\left(x-1\right)\) ta được:
\(\left(x-1\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x^3-1=0\Leftrightarrow x^3=1\)
Ta có:
\(A=x^{1981}+\frac{1}{x^{1981}}=\left(x^3\right)^{660}.x+\frac{1}{\left(x^3\right)^{660}.x}\)
\(=x.1+\frac{1}{1.x}=x+\frac{1}{x}=\frac{x^2+1}{x}=\frac{-x}{x}\)
\(=-1\)
Vậy \(A=x^{1981}+\frac{1}{x^{1981}}=-1\)
Bài 1:
a) Ta có: 2x + 2x+3 = 144
2x.(1+23) = 144
2x.9 = 144
2x = 16
x = 4
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
Bạn ơi thực ra với x^2+x+1=0 thì vô nghiệm trên R nhưng đề bài không cho x thuộc số thực nên:
(x-1)(x\(^n\)+x+1)=0
x\(^3\)-1=0
x\(^3\)=1
Với n chia hết cho 3 => n=3k
=> A= x\(^{3k}\)+\(\frac{1}{x^{3k}}\)= x\(^{3^k}\)+ \(\frac{1}{x^{3^k}}\)= 1\(^k\)+\(\frac{1}{1^k}\)=2
Với n không chia hết cho 3
Đặt n=3k+1 và n=3k+2
Với n= 3k+1 ta có
A=x\(^{3k+1}\)+ \(\frac{1}{x^{3k+1}}\)=x\(^{3k}\). x +\(\frac{1}{x^{3k}.x}\)= x+\(\frac{1}{x}\)=\(\frac{x^2+1}{x}\)=\(\frac{x^2+x+1-1}{x}\)=\(\frac{-x}{x}\)= -1
Với n= 3k=2 trương tự ta có
A= -1
Vậy A=2 với x chia hết cho 3 A=-1 khi x ko chia hết cho 3
x2+x+1=0
=>x2+2.1/2.x+1/4+3/4=0
=>(x+1/2)2+3/4=0,vô lý, không có x