K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

a  tìm số nguyên x biết (x-5).(y-7)=1 
   (x-5).(y-7)=1 = 1.1 = -1.(-1) 
   TH1,
   x-5 = 1, y-7 = 1
   => x = 6, y = 8
   TH2

  x -5 = -1, y - 7 = -1
=> x = 4, y = 6

 

1 tháng 3 2019

a) 4x - 15 = -75 -x

   4x+x = -75 + 15

   5x = 60

     x= 60: 5

  => x= 12

b) 3| x-7| = 21

      |x-7|= 21:3

      |x-7|=7

  => x-7 =7 hoặc x-7=-7

 +) x-7=7

     x=7+7=14

  +) x-7=-7

      x= -7+7=0

=> x=14 hoặc x=0

c) Áp dụng t/c phân số bằng nhau 

=> x= \(\frac{-3.\left(-2\right)}{6}\)=\(\frac{6}{6}\)=1

Thay x=1 => y= \(\frac{\left(-2\right).\left(-18\right)}{1}\)=\(\frac{36}{1}\)=36

Thay y =36 => z=\(\frac{\left(-18\right).24}{36}\)=\(\frac{-432}{36}\)=-12

vậy (x,y,z)= (1;36;-12)

(câu d dài quá vs lại cx dễ nên bn tự lm nha mk chỉ giúp đến đây thôi)

8 tháng 1 2019

a,A=|x-7|+12

  Vì \(\left|x-7\right|\ge0\forall x\)nên \(\left|x-7\right|+12\ge12\forall x\)

  Ta thấy A=12 khi |x-7| = 0 => x-7 = 0 => x = 7

  Vậy GTNN của A là 12 khi x = 7

b,B=|x+12|+|y-1|+4

   Vì \(\left|x+12\right|\ge0\forall x\)

        \(\left|y-1\right|\ge0\forall y\)

   nên \(\left|x+12\right|+\left|y-1\right|\ge0\forall x,y\)

      \(\Rightarrow\left|x+12\right|+\left|y-1\right|+4\ge4\forall x,y\)

Ta thấy B = 4 khi \(\hept{\begin{cases}\left|x+12\right|=0\\\left|y-1\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x+12=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-12\\y=1\end{cases}}\)

Vậy GTNN của B là 4 khi x = -12 và y = 1

8 tháng 1 2019

cậu có thể làm những ý khác ko

9 tháng 9 2019

a) \(2\left(x+5\right)-3x=2x+1\)

\(\left(x+2\right)+\left(x-2x+1\right)\ge0\)

\(=\left(x+2\right)+\left(x-2+1\right)-3\ge-1\)

b)

  Bài này ta sử dụng kĩ thuật tham số hóa.

  Giả sử A đạt GTNN tại a= x, b= y, c= z khi đó x + y  +z = 3.            (1)

  Áp dụng bất đẳng thức Cauchy cho 2 số dương ta có:

       a2+x2≥2axa2+x2≥2ax.          4a2≥8ax−4x24a2≥8ax−4x2.

       b2+y2≥2byb2+y2≥2by. =>    6b2≥12by−6y26b2≥12by−6y2.

       c2+z2≥2zc2+z2≥2z.           3c2≥6cz−3z23c2≥6cz−3z2.

 => A≥(8ax+12by+6cz)−(4x+6y+3z)A≥(8ax+12by+6cz)−(4x+6y+3z).

  Để sử dụng được GT thì 8x = 12y = 6z.                                          (2)

  Từ (1); (2) ta tìm ra được x, y, z=>...

c,d chịu 

\(x=-1\)

11 tháng 12 2023

Bài 1: 

a,  \(x^2\) +2\(x\) = 0

     \(x.\left(x+2\right)\) = 0

     \(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)

      \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

      \(x\) \(\in\) {-2; 0}

b, (-2.\(x\)).(-4\(x\)) + 28  = 100

      8\(x^2\)           + 28  = 100

        8\(x^2\)                   = 100 - 28

        8\(x^2\)                   = 72

          \(x^2\)                  = 72 : 8

          \(x^2\)                   = 9

           \(x^2\)                  = 32

          |\(x\)|                  = 3

          \(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\) 

Vậy \(\in\) {-3; 3}

11 tháng 12 2023

c, 5.\(x\) (-\(x^2\)) + 1 = 6

   - 5.\(x^3\)       + 1 = 6

   5\(x^3\)                 = 1 - 6

   5\(x^3\)                 = - 5

    \(x^3\)                  =  -1

    \(x\)                    =  - 1

   

17 tháng 1 2018

a)x.y=6

=> x.y=6=1.6=2.3=(-1).(-6)=(-2).(-3)=...

Ta có bảng giá trị sau:

x16-1-623-2-3
y61-6-132-3-2

Vậy (x,y) thuộc {(1;6);(6;1);(-1;-6);(-6;-1);(2;3);(3;2);(-2;-3);(-3;-2)}

b)x.(y-1)=-5

=>x.(y-1)=-5=1.(-5)=5.(-1)

Ta có bảng giá trị sau:

y-1-51-15
x1-55-1
y-4206

Bạn tự ghi kết quả tương tự như câu a nhé

c)(y-1).(x-2)=7

=>(y-1).(x-2)=7=1.7=(-1).(-7)=...

Ta có bảng giá trị sau:

y-117-1-7
x-271-7-1
x93-5-3
y280

-6

Đáp án tự ghi nhé

d)xy+3x-2y=11

xy+3x-2y-6=5

x.(y+3)-2.(y+3)=5

=>(y+3).(x-2)=5

Ta có bảng giá trị sau:

y+315-1-5
x-251-5-1
x73-31
y-22-4

8

Bạn làm tương tự câu d nhé,mình mệt lắm rồi.Nếu ko làm được thì bạn hỏi người khác nhé

ĐỪNG QUÊN CHO MÌNH 1 K ĐÚNG

21 tháng 1 2018

a) vì x.y =6 mà x; y thuộc Z

nên

bảng giá trị
x16-1-623-2-3
y61-6-132-3-2