K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2015

Ta phải chứng minh , 2. x + 3 . y chia hết cho 17, thì 9 . x + 5 . y chia hết cho 17  

Ta có 4 ﴾2x + 3y ﴿ + ﴾ 9x + 5y ﴿ = 17x + 17y chia hết cho 17

Do vậy ; 2x + 3y chia hết cho 17 4 ﴾ 2x +3y ﴿ chia hết cho 17 9x + 5y chia hết cho 17

Ngược lại ; Ta có 4 ﴾ 2x + 3y ﴿ chia hết cho 17 mà ﴾ 4 ; 17 ﴿ = 1

 2x + 3y chia hết cho 17

Vậy ... 

22 tháng 11 2021

sssssssssssss

5 tháng 1 2017

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

27 tháng 2 2020

A=(2+2²+2³+2⁴)+(25+26+27+28)...+(217+218+219+220)

=2(1+2+4+8)+25(1+2+4+8)+...+217(1+2+4+8)

=15(2+25+29+...+217)

=30.(1+2⁴+28+...+216) chia hết cho 10

=> A có tận cùng là 0

27 tháng 2 2020

b) Có a-5b chia hết cho 17

=> 10(a-5b) chia hết cho 17.

=> 10a-50b chia hết cho 17.

Mà 51b= 17×3b chia hết cho 17

=> 10a-50b+51b chia hết cho 17

=> 10a+b chia hết cho 17

15 tháng 8 2020

a)

CM chiều xuôi.

Có:     \(2x+3y⋮17.\)    CMR:     \(9x+5y⋮17\)

\(\Rightarrow9\left(2x+3y\right)⋮17\)

\(\Rightarrow18x+27y⋮17\)

\(\Rightarrow18x+10y+17y⋮17\)

MÀ    \(17y⋮17\)

\(\Rightarrow2\left(9x+5y\right)⋮17\)

\(\Rightarrow9x+5y⋮17\left(đpcm\right)\)     do 2 ko chia hết cho 17

CM chiều đảo: 

Có:    \(9x+5y⋮17\)     . CMR:     \(2x+3y⋮17\)

=>   \(18x+10y⋮17\)

=>   \(18x+27y-17y⋮17\)

=>   \(18x+27y⋮17\)    do     \(17y⋮17\)

=>    \(2x+3y⋮17\)     do 9 ko chia hết cho 17.

VẬY QUA CM ĐẢO VÀ XUÔI TA CÓ ĐPCM.

**** ĐỀ BÀI THIẾU NGHIÊM TRỌNG LÀ    \(x;y\inℤ\)     nhé !!!!

a) Ta phải chứng minh: 2.x + 3.y chia hết cho 17 thì 9.x + 5.y chia hết cho 17

Ta có 4.(2x + 3y) + (9x+ 5y) = 17x + 17y chia hết cho 17

Do vậy : 2x + 3y chia hết cho 17; 4.(2x + 3y) chia hết cho 17; 9x + 5y chia hết cho 17

Ngược lại : Ta có 4.(2x + 3y) chia hết cho 17 mà (4;17) = 1 => 2x + 3y chia hết cho 17. 

b) Gọi số cần tìm là a. Theo đề bài ra ta có a:9 dư 5 => 2a - 1 chia hết cho 9

a :7 dư 4 => 2a - 1 chia hết cho 7; a: 5 dư 3 => 2a - 1 chia hết cho 5

Vì 2a - 1 chia hết cho 9,7,5 và a nhỏ nhất => 2a - 1 thuộc BCNN(9;5;7)

9 = 32; 5 = 5; 7 = 7 => BCNN(9;5;7) = 32.5.7 = 315. Ta có: 2a - 1 = 135 

2a = 315 + 1 => 2a = 316 => a = 316 : 2 = 158

=> Số thỏa mãn yêu cầu đề bài mà ta cần tìm là 158. 

AH
Akai Haruma
Giáo viên
25 tháng 8 2024

Lời giải:

Nếu $2x+3y\vdots 17$

$\Rightarrow 9(2x+3y)\vdots 17$

$\Rightarrow 18x+27y\vdots 17$

$\Rightarrow 18x+27y-17y\vdots 17$

$\Rightarrow 18x+10y\vdots 17$

$\Rightarrow 2(9x+5y)\vdots 17$

$\Rightarrow 9x+5y\vdots 17(1)$
-----------------------

Nếu $9x+5y\vdots 17$

$\Rightarrow 2(9x+5y)\vdots 17$

$\Rightarrow 18x+10y\vdots 17$

$\Rightarrow 18x+10y+17y\vdots 17$

$\Rightarrow 18x+27y\vdots 17$

$\Rightarrow 9(2x+3y)\vdots 17$

$\Rightarrow 2x+3y\vdots 17(2)$

Từ $(1); (2)$ ta có đpcm.

1 tháng 2 2019

Ta có 17x+17y chia hết cho 17

9x+5y chia hết cho 17

=> 17x+17y-9x-5y=8x+12y=4(2x+3y) chia hết cho 17 => 2x+3y chia hết cho 17

18 tháng 3 2019

Giả sử: \(9x+5y⋮17\)

           \(\Rightarrow3\left(9x+5y\right)⋮17\)

           \(\Rightarrow27x+15y⋮17\)

          \(\Rightarrow\left(17x+10x+15y\right)⋮17\)

           \(Vì\)  \(17x⋮17\)  nên \(\left(10x+15y\right)⋮17\)

        \(\Rightarrow2x+3y⋮17\) \(chỉ\)\(khi\) \(\left(9x+5y\right)⋮17\left(dieu1\right)\)

         Giả sử: \(2x+3y⋮17\)

                    \(\Rightarrow5\left(2x+3y\right)⋮17\)

                    \(\Rightarrow\left(10x+15y\right)⋮17\)

                    \(\Rightarrow\left(17x+10x+15y\right)⋮17\)

                    \(\Rightarrow\left(27x+15y\right)⋮17\)

                    \(\Rightarrow3\left(9x+5y\right)⋮17\)

                    \(Mà\) \(3\) không chia hết cho 17 \(\Rightarrow9x+5y⋮17\) (điều 2)

                  Từ điều 1 và điều 2 \(\Rightarrow2x+3y⋮17\Leftrightarrow9x+5y⋮17\)

                    Vậy \(2x+3y⋮17\Leftrightarrow9x+5y⋮17\)