Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a, \(\dfrac{-x-2}{3}\) = - \(\dfrac{6}{7}\)
- \(x\) - 2 = - \(\dfrac{18}{7}\)
\(x\) = - 2 + \(\dfrac{18}{7}\)
\(x\) = - \(\dfrac{4}{7}\)
Bài b, \(\dfrac{4}{7-x}\) = \(\dfrac{1}{3}\)
12 = 7 - \(x\)
\(x\) = 7 - 12
\(x\) = -5
cách 2:
a=\(6-\frac{2}{3}+\frac{1}{2}-5-\frac{5}{3}+\frac{3}{2}-3+\frac{7}{3}-\frac{5}{2}\)
a=(6-5-3)-(2/3+5/3-7/3)+(1/2+3/2-5/2)
a=-2-1/2
a=-5/2
Thay x=2005 vào biểu thức, ta được:
20052005-2006*20052004+...+2006*20052-2006*2005-1
=20052005-(2006*20052004-..-2006*20052+2006*2005+1)
Đặt A=(2006*20052004-..-2006*20052+2006*2005+1)
2005A=2006*20052005-..-2006*20053+2006*20052+2005
2005A+2005*2006=2006*20052005-..-2006*20053+2006*20052+2006*2005+1+2004=A+2004
2005A-A=2004-2005*2006
2004A=2004-2005*2006
A=(2004-2005*2006)/2004=1-(2005*2006)/2004
=>20052005-(2006*20052004-..-2006*20052+2006*2005+1)=20052005-1+(2005*2006)/2004
đến đây cậu làm được chưa, quy đồng lên rồi tính, phân phối ra ý
\(\left(\frac{2}{5}\right)^2+5\frac{1}{2}:\left(4,5-2\right)-0,2\)
\(=\frac{4}{25}+\frac{11}{2}:\frac{5}{2}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{11}{2}.\frac{2}{5}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{11}{5}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{55}{25}-\frac{5}{25}\)
\(=\frac{54}{25}\)
a) Đề sai
b) \(\left|x+\frac{4}{5}\right|=\frac{1}{7}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{4}{5}=\frac{1}{7}\\x+\frac{4}{5}=\frac{-1}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{7}-\frac{4}{5}\\x=\frac{-1}{7}-\frac{4}{5}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{35}-\frac{28}{35}\\x=\frac{-5}{35}-\frac{28}{35}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{-23}{35}\\x=\frac{-33}{35}\end{cases}}}\)
Vậy \(x=\frac{-23}{35}\)hoặc \(x=\frac{-33}{35}\)
a. Thay x=1,y=1 vào công thức ta có:
\(A=1.1+1^2.1^2+1^3.1^3+...+1^{100}.1^{100}\)
\(A=1+1+1+...+1\)
\(A=1.100=100\)
b. Thay x=1, y=1 vào công thức ta có:
\(B=1^5-1^5=1-1=0\)
chúc bn học tốt! :D
Ta có : \(C=\frac{1}{2}+\left(-\frac{2}{3}\right)+\left(-\frac{2}{3}\right)^2+\left(-\frac{2}{3}\right)^3+......+\left(-\frac{2}{3}\right)^{2018}\)
\(\Rightarrow C=\frac{1}{2}-\left(\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\right)\)
Đặt \(\Rightarrow A=\frac{2}{3}+\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+.....+\left(\frac{2}{3}\right)^{2018}\)
\(\Rightarrow\frac{2}{3}A=\left(\frac{2}{3}\right)^2+\left(\frac{2}{3}\right)^3+\left(\frac{2}{3}\right)^4+.....+\left(\frac{2}{3}\right)^{2019}\)
\(\Rightarrow A-\frac{2}{3}A=\frac{2}{3}-\frac{2}{3}^{2019}\)
\(\Rightarrow\frac{1}{3}A=\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\)
=> A = \(\left(\frac{2}{3}-\left(\frac{2}{3}\right)^{2019}\right).3\)
=> A = 2 - \(\frac{2^{2019}}{3^{2018}}\)
ta có : x=2010
->x-1=2009
A(x)=x2010-(x-1).x2009 -(x-1).x2008 -...-(x-1).x+1
A(x)=x2010-x2010+x2009-x2009+x2008-...-x2+x+1
A(x)=x+1=2010+1=2011
2a/ Ta có: \(\left|x+1\right|\ge0\Rightarrow A=\left|x+1\right|+5\ge5\)
Đẳng thức xảy ra khi: |x + 1| = 0 => x = -1
Vậy giá trị nhỏ nhất của A là 5 khi x = -1
Sửa đề :
\(A=\frac{1}{2^0}+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2005}}\)
\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{2004}}\)
\(2A-A=\left(1+2+\frac{1}{2}+...+\frac{1}{2^{2004}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2005}}\right)\)
\(A=2-\frac{1}{2^{2005}}\)