Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x- 2)2 =25
(x- 2)2 =52
\(\Rightarrow\orbr{\begin{cases}x-2=5\\x-2=-5\end{cases}\Rightarrow\orbr{\begin{cases}z=7\\x=-3.\end{cases}}}\)
Vậy..............................................
b) (3x-6).3=34
3x-6=34:3
3x-6=9
3x=9+6
3x=15
x=15:3
x=5
Vậy x=5
a)(x-2)\(^2\)=25
\(\rightarrow\)(x-2)\(^2\)=5\(^2\)
\(\rightarrow\)x-2=5 hoặc x-2=(-5)
TH1:x-2=5 TH2:x-2=(-5)
\(\rightarrow\)x=5+2 \(\rightarrow\)x=(-5)+2
\(\rightarrow\)x=7 \(\rightarrow\)x=(-3)
Vậy x =7;x=(-3)
b)(3x-6).3=3\(^4\)
\(\rightarrow\)(3x-6).3=81
\(\rightarrow\)(3x-6) =81:3
\(\rightarrow\)3x-6 =27
\(\rightarrow\)3x =27+6
\(\rightarrow\)3x =33
\(\rightarrow\)x =33:3
\(\rightarrow\)x =11
Vậy x=11
MÌNH LÀM ĐÚNG RỒI ĐÓ CÁC BẠNNHỚ K ĐÚNG NHA
Suy ra
\(x^2=0\Rightarrow x=0\)
Hoặc \(x^3+1=0\Rightarrow x^3=-1\Rightarrow x=-1\)
Bài 1:
\(=\left(15+47\right)\cdot42+42\cdot38=42\left(15+47+38\right)=42\cdot100=4200\)
Bài 2:
a: \(\Leftrightarrow3^x\left(1+3+3^2\right)=39\)
\(\Leftrightarrow3^x=3\)
hay x=1
b: \(\Leftrightarrow x^{2016}\left(1-x\right)=0\)
hay \(x\in\left\{0;1\right\}\)
sửa đề
\(a,5^x-3^2=\left(2^2\right)^2\)
\(\Rightarrow5^x-9=16\)
\(\Rightarrow5^x=16+9\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
a) \(5^x-3^2=\left(2^2\right)^2\)(bài a sữa dấu cộng thành dấu trừ mới đúng nha)
\(5^x-9=16\)
\(5^x=25\)
\(5^x=5^2\)
\(x=2\)
b) \(50-7^x=1^9\)
\(50-7^x=1\)
\(7^x=49\)
\(7^x=7^2\)
\(x=2\)
c) \(15.3^x-10^2=45\)
\(15.3^x-100=45\)
\(15.3^x=145\)
\(3^x=\frac{29}{3}\)(đề sai)
d)\(2^3+3.2^x=56\)
\(8+3.2^x=56\)
\(3.2^x=48\)
\(2^x=16\)
\(2^x=2^4\)
\(x=4\)
e) \(5^4-2^3.5^x=5^2\)
\(625-8.5^x=25\)
\(8.5^x=600\)
\(5^x=75\)(Đề sai)
\(x^{2020}=x\Leftrightarrow x^{2020}-x=0\Leftrightarrow x\left(x^{2019}-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(1+2+2^2+2^3+....+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{2016}+2^{2017}+2^{2018}\right)+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+.....+2^{2016}\left(1+2+2^2\right)+2^{2019}+2^{2020}\)
\(A=7+2^3.7+2^6.7+2^9.7+....+2^{2016}.7+2^{2019}+2^{2020}\)
\(\text{Ta có:}2^{2019}+2^{2020}=8^{673}+8^{673}.2\equiv1+1.2\left(\text{mod 7}\right)\equiv3\left(\text{mod 7}\right)\Rightarrow A\text{ chia 7 dư 3}\)