Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ phân tích thành nhân tử ;
= C2-( a +b )2=( c-a -b ) . ( c+a +b )
a, Sửa đề :
\(a^2+b^2-ac+2ab-bc\)
\(=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b\right)\left(a+b-c\right)\)
b, \(\frac{1}{4}a^2b-bc^4=b\left(\frac{1}{4}a^2-c^4\right)=b\left(\frac{1}{2}a-c^2\right)\left(\frac{1}{2}a+c^2\right)\)
1, \(a^2b-2ab^2+ab\) = \(ab\left(a-2b+1\right)\)
2, \(a\left(x-1\right)+b\left(1-x\right)\)=\(a\left(x-1\right)-b\left(x-1\right)\)
=\(\left(x-1\right)\left(a-b\right)\)
a) =a(b2- c2) + bc2- ba2 +a2c - b2c
=a(b2-c2) - (b2c - bc2) - (ba2 - a2c)
=a(b-c)(b+c) -bc(b-c) - a2(b-c)
=(b-c)\(\left[a\left(b+c\right)-bc-a^2\right]\)
=(b-c)(ab+ac-bc-a2)
=\(\left(b-c\right)\left[\left(ab-bc\right)-\left(a^2-ac\right)\right]\)
=\(\left(b-c\right)\left[b\left(a-c\right)-a\left(a-c\right)\right]\)
=\(\left(b-c\right)\left(a-c\right)\left(b-a\right)\)
a) \(x^3+2x^2+3x+2=x^3+x^2+x^2+x+2x+2=x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+2\right)\)
b) \(=\left(x-y\right)^2-\left(a-b\right)^2=\left(x-y+a-b\right)\left(x-y-a+b\right)\)
a) x3+2x2+3x+2
= x3+x2+x2+x+2x+2
= x2(x+1)+x(x+1)+2(x+1)
= (x+1)(x2+x+2)
b) x2-2xy+y2-a2+2ab-b2
= (x2-2xy+y2)-(a2-2ab+b2)
= (x-y)2-(a-b)2
= (x-y+a-b)(x-y-a+b)
Bài 1: 4a2-4ab+b2-9a2b2
=(2a)2-2.2a.b+b2-(3ab)2
=(2a-b)2-(3ab)2
=(2a-b-3ab)(2a-b+3ab)
a/ (4a2-4ab+b2)-9a2b2
= (2a-b)2-(3ab)2
= (2a-b-3ab) (2a-b+3ab)
\(x^2-y^2+4x+4\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
\(4x^2-y^2+8\left(y-2\right)\)
\(=4x^2-\left(y^2-8y+16\right)\)
\(=4x^2-\left(y-4\right)^2\)
\(=\left(2x+y-4\right)\left(2x-y+4\right)\)
a) \(P\left(a,b\right)=3a^2-2ab+b^2=3a^2-3ab+ab-b^2\)\(=3a\left(a-b\right)+b\left(a-b\right)=\left(a-b\right)\left(3a+b\right)\)
b) \(P\left(a,b\right)=0\Leftrightarrow\orbr{\begin{cases}a-b=0\\3a+b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\a=\frac{-b}{3}\end{cases}}}\)
+) \(a=b\Leftrightarrow M=\frac{a^2+a.a+2a^2}{2a^2-a^2}=4\)
+) \(a=\frac{-b}{3}\Rightarrow M=\frac{\left(\frac{-b}{3}\right)^2+\left(\frac{-b}{3}\right).b+2b^2}{2.\left(\frac{-b}{3}\right)^2-b^2}=\frac{\frac{16}{9}b^2}{\frac{-7}{9}b^2}=\frac{-16}{7}\)
\(a^3b-ab^3+a^2+2ab+b^2\)
\(=\left(a^3b-ab^3\right)+\left(a^2+2ab+b^2\right)\)
\(=ab\left(a^2-b^2\right)+\left(a+b\right)^2\)
\(=ab\left(a-b\right)\left(a+b\right)+\left(a+b\right)^2\)
\(=\left(a+b\right)\left[ab\left(a-b\right)+\left(a+b\right)\right]\)
\(=\left(a+b\right)\left(a^2b-ab^2+a+b\right)\)
Bài 2. Phân tích các đa thức sau thành nhân tử: a3b-ab3+a2+2ab+b2
Giải
a3b-ab3+a2+2ab+b2
= ab(a2-b2)+(a+b)2
= ab(a-b)(a+b)+(a+b)2
= [a2b-ab2+a+b] . (a+b)