Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(B=5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)+2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+\left(4x-4\right)\cdot\left(x+3\right)+2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+12x-4x-12+50-60+18x^2\)
\(=42x^2-72x+43\)
2) \(C=\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a+1\right)^2\)
\(=4a^4-4a^3+2a^2+4a^3-4a^2+2a+2a^2-2a+1-\left(4a^2+4a+1\right)\)
\(=4a^4+2a^2-4a^2+2a^2+1-4a^2-4a-1\)
\(=4a^4-4a^2-4a\)
3) Sky Sơn Tùng làm đúng rồi nhé.
4) \(E=\left(x^2-5x+1\right)^2+2\left(5x-1\right)\left(x^2-5x+1\right)\left(5x-1\right)^2\)
\(=x^4+27x^2+1-10x^3+250x^5-1400x^4+1030x^3-302x^2+40x-2\)
\(=-1399x^4-275x^2-1+1020x^3+250x^5+40x\)
5) \(F=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2\)
\(=\left[a^2+b^2-c^2-\left(a^2-b^2+c^2\right)\right]\cdot\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\)
\(=\left(a^2+b^2-c^2-a^2+b^2-c^2\right)\cdot2a^2\)
\(=\left(2b^2-2c^2\right)\cdot2a^2\)
\(=2\left(b^2-c^2\right)\cdot2a^2\)
\(=2\left(b-c\right)\left(b+c\right)\cdot2a^2\)
\(=2\cdot2a^2\cdot\left(b-c\right)\left(b+c\right)\)
\(=4a^2\cdot\left(b-c\right)\left(b+c\right)\)
6) \(G=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+\left(-c\right)^2+2ab-2ac-2bc-2\left(a^2+2ab+b^2\right)\)
\(=a^2+b^2+c^2+2ab+a^2+b^2+\left(-c\right)^2+2ab-2a^2-4ab-2b^2\)
\(=0+0+c^2+0+c^2\)
\(=2c^2\)
7) \(H=\left(a+c\right)\left(a-c\right)-\left(a-b-c\right)\left(a-b+c\right)+b\left(b-2x\right)\)
\(=a^2-c^2-\left[\left(a-b\right)^2-c^2\right]+b^2-2bx\)
\(=a^2-c^2-\left(a^2-2ab+b^2-c^2\right)+b^2-2bx\)
\(=a^2-b^2-a^2+2ab-b^2+c^2+b^2-2bx\)
\(=2ab-2bx\)
\(D=\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)=\left(9x-1+1-5x\right)^2=\left(4x\right)^2=16x^2\)
a) 5.(2x-1)2+4.(x-1).(x+3-2).(5-3x)2
=20x2-20x+5+36x4-120x3+64x2+120x-100
=36x4+(-20x+120x)+(5-100)+(64x2+20x2)-120x3
=36x4+100x-95+84x2-120x3
b,c,d bn tự tính nhé bậc cao qá nên khó tính
a) (2a2+2a+1).(2a2-2a+1)-(2a2+1)2
Áp dụng hằng đẳng thức A2- B2= (A+B)(A-B)
ta có : (2a2+1)2 - (2a)2 - (2a2+1)2
= 4a2
a, \(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=20x^2-20x+5+4x^2+12x-4x-12-50+60x-18x^2\)
\(=6x^2+48x-57\)
b, \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)
\(=81x^2-18x+1+1-10x+25x^2+18x-90x^2-2+10x\)
\(=16x^2\)
c;d;e;f tự làm, đầu I giữ lấy còn trường tồn:)
\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+4\left(x^2+2x-3\right)-2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+8x-12-50+60x-18x^2\)
\(=\left(20x^2+4x^2-18x^2\right)+\left(60x+8x-20x\right)+\left(5-12-50\right)\)
\(=6x^2+48x-57\)
Bài 1:
a) Ta có: \(\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=4x^2-4x+1+4\left(x^2+2x-3\right)-2\left(25-30x+9x^2\right)\)
\(=4x^2-4x+1+4x^2+8x-12-50+60x-18x^2\)
\(=-10x^2+64x-61\)
b) Ta có: \(\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a^2+1\right)^2\)
\(=\left(2a^2+1\right)^2-\left(2a\right)^2-\left(2a^2+1\right)^2\)
\(=-4a^2\)
c) Ta có: \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)
\(=\left(9x-1+1-5x\right)^2\)
\(=\left(4x\right)^2=16x^2\)
d)
Sửa đề: \(\left(x^2+5x-1\right)^2+2\left(5x-1\right)\left(x^2+5x-1\right)+\left(5x-1\right)^2\)
Ta có: \(\left(x^2+5x-1\right)^2+2\left(5x-1\right)\left(x^2+5x-1\right)+\left(5x-1\right)^2\)
\(=\left(x^2+5x-1+5x-1\right)^2\)
\(=\left(x^2+10x-2\right)^2\)
\(=x^4+100x^2+4+20x^3-40x-4x^2\)
\(=x^4+20x^3+96x^2-40x+4\)
e) Ta có: \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=x\left(x^2-1\right)-\left(x^3+1\right)\)
\(=x^3-x-x^3-1\)
=-x-1
f) Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x\left(x^2-16\right)-\left(x^4-1\right)\)
\(=x^3-16x-x^4+1\)