Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F K I O
a) + Tứ giác ABCD là hình bình hành
\(\Rightarrow\hept{\begin{cases}AB//CD\\AO=CO\end{cases}}\)
Tứ giác AECF có : \(\hept{\begin{cases}AE//CF\\AE=CF\end{cases}}\)
=> Tứ giác AECF là hình bình hành
=> AC và EF cắt nhau tại trung điểm của mỗi đường
=> O là trung điểm của EF
=> E đối xứng với F qua O
b) + Tứ giác ABCD là hình bình hành
=> AB = CD => AB - AE = CD - CF
=> BE = DF
Tứ giác BEDF có : \(\hept{\begin{cases}BE=DF\\BE//DF\end{cases}}\)
=> tứ giác BEDF là hình bình hành
=> DE // BF
+ Tứ giác IEKF có : \(\hept{\begin{cases}IE//KF\\IF//KE\end{cases}}\)
=> tứ giác IEKF là hình bình hành
=> IK và EF cắt nhau tại trung điểm mỗi đường
=> O là trung điểm của IK
=> I đối xứng với K qua O
gửi nhầm cái này nè
Câu hỏi của Đỗ Thanh Huyền - Toán lớp 8 | Học trực tuyến
bạn vào nich này tham khảo nè
Kết quả tìm kiếm | Học trực tuyến
a: Ta có: ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của CA và BD
Xét tứ giác AECF có
AE//CF
AE=CF
DO đó: AECF là hình bình hành
Suy ra: AC cắt EF tại trung điểm của mỗi đường
=>O là trung điểm của EF(1)
b: Xét ΔABC có EI//AC
nên EI/AC=BE/BA=DF/DC(2)
Xét ΔADC có FK//AC
nên FK/AC=DF/DC(3)
Từ (2) và (3) suy ra EI=FK
Xét tứ giác EIFK có
EI//FK
EI=FK
Do đó: EIFK là hình bình hành
Suy ra: EF cắt KI tại trung điểm của mỗi đường(4)
Từ (1) và (4) suy raO là trung điểm của KI