K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(=3+2\sqrt{2}+\sqrt{5}-2=1+2\sqrt{2}+\sqrt{5}\)

2: \(=\dfrac{-\sqrt{7}-\sqrt{5}}{2}-\dfrac{2\left(\sqrt{7}+1\right)}{6}\)

\(=\dfrac{-3\sqrt{7}-3\sqrt{5}-2\sqrt{7}-2}{6}=\dfrac{-5\sqrt{7}-3\sqrt{5}-2}{6}\)

3: \(=-\sqrt{3}-\sqrt{2}-\dfrac{-2\sqrt{3}+3\sqrt{2}}{2}\)

\(=\dfrac{-2\sqrt{3}-2\sqrt{2}+2\sqrt{3}-3\sqrt{2}}{2}=-\dfrac{5\sqrt{2}}{2}\)

24 tháng 5 2017

1, đk: \(x>0\)\(x\ne4\)

Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)

Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\)\(x\ne4\)

\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)

\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)

Vậy MinA=1 khi x=1

2, đk: \(x\ge0;x\ne1;x\ne9\)

Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)

Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)

\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MaxB=-1 khi x=4

3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)

Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)

Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)

\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)

\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)

Vậy MinC=\(\dfrac{1}{11}\) khi x=4

3 tháng 7 2017

\(P=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(P=\dfrac{\sqrt{2}-1}{\left(1+\sqrt{2}\right)\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{99}+\sqrt{100}\right)\left(\sqrt{100}-\sqrt{99}\right)}\)

\(P=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}\)

\(P=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(P=-1+\sqrt{100}=-1+10=9\)

3 tháng 7 2017

Áp dụng:\(\dfrac{1}{\sqrt{a}+\sqrt{a+1}}=\dfrac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\dfrac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\)

13 tháng 3 2017

DAT P = Q:R \(Q=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(3\sqrt{a}-1\right)}-\dfrac{\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(3\sqrt{a}-1\right)}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(=\dfrac{\sqrt{a}-1}{3\sqrt{a}-1}-\dfrac{1}{3\sqrt{a}+1}+\dfrac{8\sqrt{a}}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(=\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\)

\(R=1-\dfrac{2\sqrt{a}-a+1}{3\sqrt{a}+1}=\dfrac{a+\sqrt{a}}{3\sqrt{a}+1}=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{3\sqrt{a}+1}\)

\(\Rightarrow P=Q:R=\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)}{\left(3\sqrt{a}-1\right)\left(3\sqrt{a}+1\right)}\times\dfrac{3\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

\(P=\dfrac{3}{3\sqrt{a}-1}\)

\(P>\dfrac{3}{\left|1-3\sqrt{5}\right|}\Leftrightarrow\dfrac{3}{3\sqrt{a}-1}>\dfrac{3}{3\sqrt{5-1}}\)

\(3\sqrt{a}-1< 3\sqrt{5}-1\)

\(\Rightarrow0\le\sqrt{a}\le\sqrt{5}\)

\(a=\) 0 ;1 ;2 ;3 ;4

​a lớn nhất \(\Rightarrow a\) = 4

13 tháng 3 2017

Bạn rút gọn được P chưa ?~!

a: \(\left(3+\sqrt{5}\right)^2=14+6\sqrt{5}\)

\(\left(2\sqrt{2}+\sqrt{6}\right)^2=14+4\sqrt{12}\)

mà \(6\sqrt{5}< 4\sqrt{12}\)

nên \(3+\sqrt{5}< 2\sqrt{2}+\sqrt{6}\)

c: \(\sqrt{14}-\sqrt{13}=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)

\(\sqrt{12}-\sqrt{11}=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)

mà \(\dfrac{1}{\sqrt{14}+\sqrt{13}}< \dfrac{1}{\sqrt{12}+\sqrt{11}}\)

nên \(\sqrt{14}-\sqrt{13}< \sqrt{12}-\sqrt{11}\)

15 tháng 6 2017

ĐẶT x = \(\sqrt{3}\)

\(\dfrac{\sqrt{3}}{1-\sqrt{\sqrt{3}+1}}+\dfrac{\sqrt{3}}{1+\sqrt{\sqrt{3}+1}}\)

\(\Leftrightarrow\dfrac{x}{1-\sqrt{x+1}}+\dfrac{x}{1+\sqrt{x+1}}\)

\(\Leftrightarrow\dfrac{x+x\sqrt{x+1}+x-x\sqrt{x+1}}{\left(1-\sqrt{x+1}\right).\left(1+\sqrt{x+1}\right)}\)

\(\Leftrightarrow\dfrac{2x}{1-x-1}\)

\(\Leftrightarrow\dfrac{2x}{-x}\) = -2

Mình mới làm quen toán 9, có gì sai sót mong bạn thông cảm. Chúc bạn học tốt :))

15 tháng 6 2017

Hic, sr bạn. Thay dấu \(\Leftrightarrow\) thành dấu = nhé :vvvv

12 tháng 7 2017

1a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(\sqrt{2-\sqrt{2+\sqrt{2}}}\right)}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{\left(4+\sqrt{8}\right)\left(2-\sqrt{2}\right)}\)

\(=\sqrt{8-4\sqrt{2}-\sqrt{16}+2\sqrt{8}}\)

\(=\sqrt{8-4\sqrt{2}-4+4\sqrt{2}}\)

\(=\sqrt{4}=2\)

12 tháng 7 2017

1b) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+4\sqrt{3}+3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{25-10\sqrt{3}+3}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}=5\)

a: \(=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-2\left(\sqrt{5}+1\right)\)

\(=2\sqrt{5}-2\sqrt{5}-2=-2\)

c: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}=4\)

d: \(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{2\sqrt{5}+2}\)

\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)

\(=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)

\(=\sqrt{2}\left(\dfrac{2+\sqrt{5}}{2+\sqrt{5}+1}+\dfrac{2-\sqrt{5}}{2-\sqrt{5}+1}\right)\)

\(=\sqrt{2}\left(\dfrac{\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\right)\)

\(=\sqrt{2}\cdot\dfrac{6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5}{4}\)

\(=\sqrt{2}\cdot\dfrac{2}{4}=\dfrac{\sqrt{2}}{2}\)