K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Bài 1:

\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)

\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)

\(=1.2\left(3-0\right)+2.3\left(4-1\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

\(=n.\left(n+1\right).\left(n+2\right)\)

\(\Leftrightarrow A=\frac{\left[n.\left(n+1\right).\left(n+2\right)\right]}{3}\)

3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3

=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]

=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)] 

=n.(n+1).(n+2) 

=>A=[n.(n+1).(n+2)] /3

11 tháng 1 2016

 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 

dựa vào nhé

11 tháng 1 2016

 

 A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)

=>3A=1.2.3+2.3.3+3.4.3+n.(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+n.(n+1)(n+2)-(n-1).n.(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1).(n+2)

=>A=n.(n+1)(n+2)/3

 

 B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

=>4B=1.2.3.4+2.3.4.4+....+(n-1)n(n+1).4

=1.2.3.(4-0)+2.3.4.(5-1)+...+(n-1)n(n+1)[(n+2)-(n-2)]

=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)

=(n-1)n(n+1)(n+2)-0.1.2.3

=(n-1)n(n+1)(n+2)

=>B=(n-1)n(n+1)(n+2)/4

8 tháng 1 2016

A=\(x = {n(n+1)(n+2){} \over 3}\)

 

8 tháng 1 2016

S=1.2+2.3+3.4+.............+n(n+1)

=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)

Ta có các công thức:

1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6

1 + 2 + 3 + ...+ n = n(n+1)/2

Thay vào ta có:

S = n(n+1)(2n+1)/6 + n(n+1)/2

=n(n+1)/2[(2n+1)/3 + 1]

=n(n+1)(n+2)/3

7 tháng 10 2024

a; A  =1 + 2 +3+ 4+ 5+ ... +n

Xét dãy số 1; 2; 3; 4;5;...;n

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)

Tổng của dãy số trên là: (n + 1).n x 2 

A = (n + 1).n:2

 

 

 

7 tháng 10 2024

B = 1 + 3 + 5+ 7+ ...+ (2n - 1)

Dãy số trên là dãy số cách đều với khoảng cách là: 

     3 - 1 = 2

Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n

Tổng của dãy số trên là:    (2n - 1 + 1) x n : 2 = n2

Vậy B = n2

 

   

16 tháng 2 2021

https://olm.vn/hoi-dap/tim-kiem?q=t%C3%ADnh+t%E1%BB%95ng+sau+:S+=+1.2.3+2.3.4+3.4.5+...+n.(n+1).(n+2)+&id=601088

22 tháng 11 2018

Đây bạn:V

Là công thức nhé 

B=\(1^2+2^2+3^2+...+n^2=\)\(\frac{n+\left(n+1\right)+\left(n+2\right)}{6}\)

C bí ko hẳn nhưng ko có công thuc voi n

\(D=1.2+2.3+3.4+...+\left(n-1\right).n=\frac{\left(n-1\right).n+\left(n+1\right)}{3}\)

\(E=1.2.3+2.3.4+3.4.5+...+\left(n-2\right).\left(n-1\right).n=\frac{\left(n-2\right).\left(n-1\right).n.\left(n+1\right)}{4}\)

k mk nha :v

6 tháng 5 2017

Bài 1 :

\(A=1\cdot2+2\cdot3+3\cdot4+...+n\cdot\left(n+1\right)\)

\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+n\cdot\left(n+1\right)\cdot3\)

\(=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+n\cdot\left(n+1\right)\cdot\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+2\cdot3\cdot4-3\cdot4\cdot5+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

6 tháng 5 2017

Bài 1.

A = 1.2 + 2.3 + 3.4 + ... + n.(n + 1)

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n + 1).3

3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n.(n + 1).(n + 2 - n - 1)

3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n.(n + 1).(n + 2 ) - (n - 1).n.(n + 1)

3A = n.(n + 1).(n + 2)

A = n.(n + 1).(n + 2) : 3

Bài 2. 

B = 1.2.3 + 2.3.4 + ... + (n - 1).n.(n + 1)

4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1).n.(n + 1).4

4B = 1.2.3.4 + 2.3.4.(5 - 1) + .... + (n - 1).n.(n + 1).(n + 2 - n - 2)

4B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1).n.(n + 1).(n + 2) - (n - 2).(n - 1).n.(n + 1)

4B = (n - 1).n.(n + 1).(n + 2)

B = (n - 1).n.(n + 1).(n + 2) : 4

Xong rồi nhé anh !