Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
dựa vào nhé
A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
=>3A=1.2.3+2.3.3+3.4.3+n.(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+n.(n+1)(n+2)-(n-1).n.(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1).(n+2)
=>A=n.(n+1)(n+2)/3
B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
=>4B=1.2.3.4+2.3.4.4+....+(n-1)n(n+1).4
=1.2.3.(4-0)+2.3.4.(5-1)+...+(n-1)n(n+1)[(n+2)-(n-2)]
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
=(n-1)n(n+1)(n+2)-0.1.2.3
=(n-1)n(n+1)(n+2)
=>B=(n-1)n(n+1)(n+2)/4
S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
Ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
Thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
a; A =1 + 2 +3+ 4+ 5+ ... +n
Xét dãy số 1; 2; 3; 4;5;...;n
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)
Tổng của dãy số trên là: (n + 1).n x 2
A = (n + 1).n:2
B = 1 + 3 + 5+ 7+ ...+ (2n - 1)
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n
Tổng của dãy số trên là: (2n - 1 + 1) x n : 2 = n2
Vậy B = n2
Đây bạn:V
Là công thức nhé
B=\(1^2+2^2+3^2+...+n^2=\)\(\frac{n+\left(n+1\right)+\left(n+2\right)}{6}\)
C bí ko hẳn nhưng ko có công thuc voi n
\(D=1.2+2.3+3.4+...+\left(n-1\right).n=\frac{\left(n-1\right).n+\left(n+1\right)}{3}\)
\(E=1.2.3+2.3.4+3.4.5+...+\left(n-2\right).\left(n-1\right).n=\frac{\left(n-2\right).\left(n-1\right).n.\left(n+1\right)}{4}\)
k mk nha :v
Bài 1 :
\(A=1\cdot2+2\cdot3+3\cdot4+...+n\cdot\left(n+1\right)\)
\(\Rightarrow3A=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot4\cdot3+...+n\cdot\left(n+1\right)\cdot3\)
\(=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+n\cdot\left(n+1\right)\cdot\left[\left(n+2\right)-\left(n-1\right)\right]\)
\(=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+2\cdot3\cdot4-3\cdot4\cdot5+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Bài 1.
A = 1.2 + 2.3 + 3.4 + ... + n.(n + 1)
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n + 1).3
3A = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n.(n + 1).(n + 2 - n - 1)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n.(n + 1).(n + 2 ) - (n - 1).n.(n + 1)
3A = n.(n + 1).(n + 2)
A = n.(n + 1).(n + 2) : 3
Bài 2.
B = 1.2.3 + 2.3.4 + ... + (n - 1).n.(n + 1)
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1).n.(n + 1).4
4B = 1.2.3.4 + 2.3.4.(5 - 1) + .... + (n - 1).n.(n + 1).(n + 2 - n - 2)
4B = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1).n.(n + 1).(n + 2) - (n - 2).(n - 1).n.(n + 1)
4B = (n - 1).n.(n + 1).(n + 2)
B = (n - 1).n.(n + 1).(n + 2) : 4
Xong rồi nhé anh !
Bài 1:
\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)
\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)
\(=1.2\left(3-0\right)+2.3\left(4-1\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
\(=n.\left(n+1\right).\left(n+2\right)\)
\(\Leftrightarrow A=\frac{\left[n.\left(n+1\right).\left(n+2\right)\right]}{3}\)
3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>A=[n.(n+1).(n+2)] /3