Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4 : Ta có : \(\frac{1+2y}{18}=\frac{1+4y}{24}\left(1\right)\)
\(\Rightarrow24+48y=18+72y
\)
\(\Rightarrow y=\frac{1}{4}\)
\(\frac{1+4y}{24}=\frac{1+6y}{6x}\left(2\right)\)
Thay y = \(\frac{1}{4}\) vào (2) ta được x = 5 (thõa mãn )
Bài 4
x/2=y/3 va x.y=54
bài giải
Đặt x/2= y/3=k
=>x=2k,y=3k
=>2k.3k=54
6.k^2=54
=>k^2=54:6
=>k^2=9
=>k=3 hoặc k=-3
Với k=3 thĩ=6; y=9
Với k=-3 thì x=-6; y=-9
Vậy các cặp (x,y) thỏa mản (6,9):(-6<-9)
Nếu sai thi bảo tớ nhé
a)\(x-\frac{3}{5}=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}+\frac{3}{5}=\frac{6}{5}\)
b)\(|x|-\frac{4}{5}=\frac{2}{3}\\ \Rightarrow|x|=\frac{2}{3}+\frac{4}{5}=\frac{22}{15}\\ \Rightarrow|x|=\frac{22}{15}\\ \Rightarrow x=\frac{22}{15}\)
c)\(\frac{x}{-5}=\frac{24}{15}\\ \Rightarrow x=\frac{-5\cdot24}{15}=-8\)
d)\(\frac{x}{4}=\frac{y}{5} và x-y=21\)
Theo tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{21}{-1}=-21\)
Do đó :
\(\frac{x}{4}=-21\Rightarrow x=-84\)
\(\frac{y}{5}=-21\Rightarrow y=-105\)
\(x-\frac{3}{5}=\frac{3}{5}\)
\(x=\frac{3}{5}+\frac{3}{5}\)
\(x=\frac{6}{5}\)
\(\left|x\right|-\frac{4}{5}=\frac{2}{5}\)
\(\left|x\right|=\frac{2}{5}+\frac{4}{5}\)
\(\left|x\right|=\frac{6}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=-\frac{6}{5}\end{cases}}\)
\(\frac{x}{-5}=\frac{24}{15}\)
\(\Rightarrow x.15=\left(-5\right).24\)
\(\Rightarrow x.15=-120\)
\(\Rightarrow x=-120:15\)
\(\Rightarrow x=-8\)
1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)
\(=-y\)
\(\Rightarrow xy=-2016y;x+y=-2015y;\)
\(x-y=-2017y\)
\(\Rightarrow-2016y-xy=0\)
\(\Rightarrow y\left(-2016-x\right)=0\)
\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)
\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)
\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)
Vậy +) x=y=0
+) x=-2016;y=1
2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)
Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)
\(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)
\(z+0,5=2.1,25=2,5\Rightarrow z=2\)
Vậy x=2;y=3;z=2.
a) x = 6 ; y = 15.
x = -6 ; y = -15.
b) x = 2 ; y = 2.
x = -2 ; y = -2.
Ta có : \(\frac{x+2}{198}+\frac{x+3}{197}=\frac{x+4}{196}+\frac{x+5}{195}\)
=> \(\left(\frac{x+2}{198}+1\right)+\left(\frac{x+3}{197}+1\right)=\left(\frac{x+4}{196}+1\right)+\left(\frac{x+5}{195}+1\right)\)
=> \(\frac{x+2+198}{198}+\frac{x+3+197}{197}=\frac{x+4+196}{196}+\frac{x+5+195}{195}\)
=> \(\frac{x+200}{198}+\frac{x+200}{197}=\frac{x+200}{196}+\frac{x+200}{195}\)
=> \(\frac{x+200}{198}+\frac{x+200}{197}-\frac{x+200}{196}-\frac{x+200}{195}=0\)
=> \(\left(x+200\right)\left(\frac{1}{198}+\frac{1}{197}-\frac{1}{196}-\frac{1}{195}\right)=0\)
Ta có : \(\frac{1}{198}+\frac{1}{197}\ne\frac{1}{196}+\frac{1}{195}\) => \(\frac{1}{198}+\frac{1}{197}-\frac{1}{196}-\frac{1}{195}\ne0\)
=> x + 200 = 0
=> x = -200
<=> (\(\frac{x+2}{198}\)+1) +(\(\frac{x+3}{197}\)+1) =(\(\frac{x+4}{196}\)+1) +(\(\frac{x+5}{195}\)+1)
<=> \(\frac{x+200}{198}+\frac{x+200}{197}=\frac{x+200}{196}+\frac{x+200}{195}\)
<=> \(\frac{x+200}{198}+\frac{x+200}{197}-\frac{x+200}{196}-\frac{x+200}{195}=0\)
<=> \(\left(x+200\right)\cdot\left(\frac{1}{198}+\frac{1}{197}-\frac{1}{196}-\frac{1}{195}\right)\)=0
Vì \(\frac{1}{195}>\frac{1}{196}>\frac{1}{197}>\frac{1}{198}\)
<=> \(\frac{1}{198}+\frac{1}{197}-\frac{1}{196}-\frac{1}{195}\) khác 0
<=> \(x+200=0\)
<=> x =