Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi UCLN (14n+17;21n+25) là d
ta có: 14 n +17 chia hết cho d => 3.(14n+17) chia hết cho d => 42n + 51 chia hết cho d
21 +25 chia hết cho d => 2.( 21+25) chia hết cho d => 42n + 50 chia hết cho d
=> 42n + 51 - 42n - 50 chia hết cho d
=> 1 chia hết cho d
=> \(A=\frac{14n+17}{21n+25}\)là phân số tối giản
Bài 2:
Để B đạt giá trị lớn nhất => 5/ (x-3)^2 + 1 = 5
=> (x-3)^2 + 1 = 1
(x-3)^2 = 0 = 0^2
=> x - 3 = 0
x = 3
KL: x = 3 để B đạt giá trị lớn nhất
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
để A\(\in\)Z
=>5 chia hết x-2
=>x-2\(\in\){1,-1,5,-5}
=>x\(\in\){3,1,7,-3}
\(C=\frac{3x-19}{x-5}=\frac{3\left(x-5\right)-4}{x-5}=\frac{3\left(x-5\right)}{x-5}-\frac{4}{x-5}\in Z\)
=>4 chia hết x-5
=>x-5\(\in\){1,-1,2,-2,4,-4}
=>x\(\in\){6,4,7,3,9,1}
B tương tự nhé
Gọi \(d=UCLN\left(12n+1;30n+2\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d\)
Suy ra phân số đã cho là phân số tối giản (đpcm)
Cái sau tương tự nha bạn
Bài 2 \(C=\frac{5}{x-2}\) .DO x nguyên nên để C nhỏ nhất thì x-2 phải là số nguyên âm lớn nhất => x-2=-1 =>x=1
Vậy với x=1 thì C đạt giá trị nhỏ nhất
Cái sau tương tự nha bạn
a , Gọi \(d=ƯCLN\)\(\left(12n+1;30n+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)
\(\Leftrightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản với mọi n .
Để \(P=\frac{x-1}{x-3}\left(x∈Z ; x ≠0\right)\) nhận giá trị nguyên
=> x - 1 ⋮ x - 3
=> ( x - 3 ) + 2 ⋮ x - 3
Mà x - 3 ⋮ x - 3 ∀ x ∈ Z
=> 2 ⋮ x - 3
=> x - 3 ∈ Ư(2)
Ta có bảng ;
x-3 | -2 | -1 | 1 | 2 |
x | -1 | 2 | 4 | 5 |
\(P=\frac{x-1}{x-3}\) | \(\frac{1}{2}\)( loại ) ( do P nhận giá trị nguyên ) | -1 ( t/m ) | 3 ( t/m ) | 2 ( t/m ) |
Để P nhận giá trị nguyên lớn nhất => P = 3 và x = 4
VÌ ( 3 - x )2 ≥ 0 ∀ x ∈ Z
=> ( 3 - x )2 - 4 ≥ 0 - 4
=> Để A = ( 3 - x )2 - 4 nhận giá trị nhỏ nhất thì A = -4
<=> ( 3 - x )2 = 0
<=> 3 - x = 0
<=> x = 3
a) A = (x - 1)2 + 12
Do (x - 1)2 \(\ge\)0 \(\forall\)x
=> (x - 1)2 + 12 \(\ge\)12 \(\forall\)x
Dấu "="xảy ra <=> x - 1 = 0 <=> x = 1
Vậy MinA = 12 khi x = 1
b) B = |x + 3| + 2020
Do |x + 3| \(\ge\)0 \(\forall\)x
=> |x + 3| + 2020 \(\ge\)2020 \(\forall\)x
Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3
Vậy MinB = 2020 khi x = -3
(c;d max hay min ?)
a) \(A=\left(x-1\right)^2+12\ge12\left(\forall x\right)\)
\("="\Leftrightarrow x=1\)
b) \(B=\left|x+3\right|+2020\ge2020\left(\forall x\right)\)
\("="\Leftrightarrow x=-3\)
c) \(C=\frac{5}{x-2}\ge\frac{5}{-1}=-5\left(\forall x\right)\)
\("="\Leftrightarrow x=1\)
d) \(D=\frac{x+5}{x-4}=1+\frac{9}{x-4}\ge1+\frac{9}{-1}=-8\left(\forall x\right)\)
\("="\Leftrightarrow x=3\)
Bài A:
=>17\(⋮\) x-13
x-13\(\in\) Ư(17)
x-13=1
x=13+1
x=14
x-13=17
x=17+13
x=30
bạn tự làm tiếp nha
mơn bạn nha!