K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2018

Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)

\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)

Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)

Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất

Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

11 tháng 7 2018

\(P=2010-\left(x+1\right)^{2008}\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)

\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)

\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)

Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)

\(\Rightarrow P=2010-0=2010\)

(Dấu"=" xảy ra <=> \(x=-1\)

Bài 2:

Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)

\(\Rightarrow C=-5\)

Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể

10 tháng 4 2017

x=-1 thì giá trị nhỏ nhất

16 tháng 7 2018

Bài 2:

\(P=2010-\left(x+1\right)^{2008}\)

Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)

\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010\forall x\)

\(P=2010\Leftrightarrow\left(x+1\right)^{2008}=0\Leftrightarrow x=-1\)

Vậy \(x=-1\)thì \(B_{max}=2010\)

16 tháng 7 2018

Bài 1:

\(D=\frac{x+5}{|x-4|}\)

Ta có: \(|x-4|\ge0\forall x\)

\(\Rightarrow D=\frac{x+5}{|x-4|}=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

Vì 1 không đổi

Nên để D đạt GTNN thì: \(\frac{9}{x-4}\)phải đạt GTLN

\(\Rightarrow x-4\)phải đạt GTLN

\(\Rightarrow x=13\)

GTNN của \(D=1+\frac{9}{x-4}=1+\frac{9}{13-4}=1+\frac{9}{9}=1+1=2\)

Vậy x=3 thì D đạt GTNN
Bài 2:

\(P=2010-\left(x+1\right)^{2008}\)

Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)

\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010-0\)

\(\Rightarrow P\le2010\)

\(\Rightarrow\)GTLN của P=2010

\(\Leftrightarrow\left(x+1\right)^{2008}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy x=-1 thì P đạt GTLN

7 tháng 4 2017

ta có \(\left(x-3\right)^2\ge0\forall x\in R\)

\(\left(x-3\right)^2+1\ge1\)

\(\frac{1}{\left(x-3\right)^2+1}\le1\)

\(\frac{5}{\left(x-3\right)^2+1}\le5\)

vậy gtln của bt là 5 khi x = 3 

19 tháng 8 2017

mình chỉ làm 1 bài thôi :

\(Q=1010-\left|3-X\right|\)

trường hợp này thì |3-x| phải là số tự nhiên  bé nhất => |3-x|=0 

=> 3-x=0

x=3-0=3

=> x=3 

a. P=2010-(x+1)^2008 
(x+1)^2008>_0 
<=> -(x+1)^2008<_0 
<=>2010-(x+1)^2008<_2010 
Vậy GTLN là 2010 

b.1010-|3-x| 
|3-x| >_0 
<=> -|3-x| <_0 
<=> 1010-|3-x| <_1010 
Vậy GTLN là 1010

@ Cre: G+ 

14 tháng 2 2018

quá đơn giản

22 tháng 7 2020

Bài làm:

a) \(P=4-\left(x-2\right)^{32}\le4\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-2\right)^{32}=0\Rightarrow x=2\)

b) \(Q=20-\left|3-x\right|\le20\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left|3-x\right|=0\Rightarrow x=3\)

c) \(C=\frac{5}{\left(x-3\right)^2+1}\le\frac{5}{1}=5\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)

22 tháng 7 2020

a) P = 4 - (x - 2)32 

Do \(\left(x-2\right)^{32}\ge0\forall x\)

=> \(P=4-\left(x-2\right)^{32}\le4\)

Dấu " = " xảy ra khi và chỉ  khi \(\left(x-2\right)^{32}=0\)hay khi x = 2

Vậy GTLN của P là 4 khi x = 2

b) Q = 20 - | 3  - x|

Do \(\left|3-x\right|\ge0\)

=> \(Q=20-\left|3-x\right|\le20\)

Dấu " = " xảy ra khi | 3 - x| = 0 => x = 3

Vậy GTLN của Q bằng 20 khi x = 3

c) Do \(\left(x-3\right)^2\ge0\)

=> \(\left(x-3\right)^2+1\le1\)

=> \(\frac{5}{\left(x-3\right)^2+1}\le\frac{5}{1}=5\)

Dấu " = " xảy ra khi (x - 3)2 = 0 => x = 3

Vậy GTLN của C = 5 khi x = 3

P/s : k chắc câu c

2 tháng 7 2015

mình gửi rồi nhưng nó bị mất nên cậu chờ một tí

2 tháng 7 2015

cam on nhe