Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010\forall x\)
\(P=2010\Leftrightarrow\left(x+1\right)^{2008}=0\Leftrightarrow x=-1\)
Vậy \(x=-1\)thì \(B_{max}=2010\)
Bài 1:
\(D=\frac{x+5}{|x-4|}\)
Ta có: \(|x-4|\ge0\forall x\)
\(\Rightarrow D=\frac{x+5}{|x-4|}=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
Vì 1 không đổi
Nên để D đạt GTNN thì: \(\frac{9}{x-4}\)phải đạt GTLN
\(\Rightarrow x-4\)phải đạt GTLN
\(\Rightarrow x=13\)
GTNN của \(D=1+\frac{9}{x-4}=1+\frac{9}{13-4}=1+\frac{9}{9}=1+1=2\)
Vậy x=3 thì D đạt GTNN
Bài 2:
\(P=2010-\left(x+1\right)^{2008}\)
Ta có: \(\left(x+1\right)^{2008}\ge0\forall x\)
\(\Rightarrow2010-\left(x+1\right)^{2008}\le2010-0\)
\(\Rightarrow P\le2010\)
\(\Rightarrow\)GTLN của P=2010
\(\Leftrightarrow\left(x+1\right)^{2008}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy x=-1 thì P đạt GTLN
ta có \(\left(x-3\right)^2\ge0\forall x\in R\)
\(\left(x-3\right)^2+1\ge1\)
\(\frac{1}{\left(x-3\right)^2+1}\le1\)
\(\frac{5}{\left(x-3\right)^2+1}\le5\)
vậy gtln của bt là 5 khi x = 3
mình chỉ làm 1 bài thôi :
\(Q=1010-\left|3-X\right|\)
trường hợp này thì |3-x| phải là số tự nhiên bé nhất => |3-x|=0
=> 3-x=0
x=3-0=3
=> x=3
a. P=2010-(x+1)^2008
(x+1)^2008>_0
<=> -(x+1)^2008<_0
<=>2010-(x+1)^2008<_2010
Vậy GTLN là 2010
b.1010-|3-x|
|3-x| >_0
<=> -|3-x| <_0
<=> 1010-|3-x| <_1010
Vậy GTLN là 1010
@ Cre: G+
Bài làm:
a) \(P=4-\left(x-2\right)^{32}\le4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-2\right)^{32}=0\Rightarrow x=2\)
b) \(Q=20-\left|3-x\right|\le20\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3-x\right|=0\Rightarrow x=3\)
c) \(C=\frac{5}{\left(x-3\right)^2+1}\le\frac{5}{1}=5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)
a) P = 4 - (x - 2)32
Do \(\left(x-2\right)^{32}\ge0\forall x\)
=> \(P=4-\left(x-2\right)^{32}\le4\)
Dấu " = " xảy ra khi và chỉ khi \(\left(x-2\right)^{32}=0\)hay khi x = 2
Vậy GTLN của P là 4 khi x = 2
b) Q = 20 - | 3 - x|
Do \(\left|3-x\right|\ge0\)
=> \(Q=20-\left|3-x\right|\le20\)
Dấu " = " xảy ra khi | 3 - x| = 0 => x = 3
Vậy GTLN của Q bằng 20 khi x = 3
c) Do \(\left(x-3\right)^2\ge0\)
=> \(\left(x-3\right)^2+1\le1\)
=> \(\frac{5}{\left(x-3\right)^2+1}\le\frac{5}{1}=5\)
Dấu " = " xảy ra khi (x - 3)2 = 0 => x = 3
Vậy GTLN của C = 5 khi x = 3
P/s : k chắc câu c
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể