Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x^4+6x^3+11x^2+6x+1=0\)
\(\Leftrightarrow x^4+6x^3+9x^2+2x^2+6x+1=0\)
\(\Leftrightarrow\left(x^2+3x+1\right)^2=0\)
\(\Leftrightarrow x^2+3x+1=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=\frac{5}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)
2. \(x^4+x^3-4x^2+x+1=0\)
\(\Leftrightarrow\left(x^4+2x^2+1\right)+2.\frac{x}{2}\left(x^2+1\right)+\left(\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)
\(\Leftrightarrow\left(x^2+1+\frac{x}{2}\right)^2-\left(\frac{5}{2}x\right)^2=0\)
\(\Leftrightarrow\left(x^2-1\right)^2\left(x^2+3x+1\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\x^2+3x+1=0\end{cases}}\)
+) ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
+) x2 + 3x + 1 = 0
<=> ( x + 3/2 )2 - 5/4 = 0
<=> ( x + 3/2 )2 = 5/4
<=> \(\hept{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{-3+\sqrt{5}}{2}\\x=-\frac{3+\sqrt{5}}{2}\end{cases}}\)
Vậy pt có tập nghiệm \(S=\left\{1;\frac{-3+\sqrt{5}}{2};-\frac{3+\sqrt{5}}{2}\right\}\)
a. \(x^2-2xy+x^3y=x\left(x-2y+x^2y\right)\)
b. \(7x^2y^2+14xy^2-21^2y=7y\left(x^2y+2xy-63\right)\)
c. \(10x^2y+25x^3+xy^2=x\left(5x+y\right)^2\)
A | B |
1.(x3-3x2+3x-1):(x-1) | a.x2-2x+1 |
2.(x+3)(x2-3x+9) | b.(x2+3)(x-1) |
3. x4+3x-x3-3 | c. 27+x3 |
Nối: 1--a ; 2--c ;3 -- b |
1.a/(x²+2x+1)(x+1)
=(x+1)(x²+2x+1)
=x(x²+2x+1)+1(x²+2x+1)
=x³+2x²+x+x²+2x+1
=x³+3x²+3x+1
c/(x-5)(x³-2x²+x-1)
=x(x³-2x²+x-1)-5(x³-2x²+x-1)
=x⁴-2x³+x²-1-5x³+10x²-5x+5
=x⁴-7x³+11x²+4-5x
=x⁴-7x³+11x²-5x+4
3.
Giá trị của x và y | Giá trị của biểu thức(x+y) (x²-Xy+y²) |
x=-10,y =2 | -1008 |
x=-1,y=0 | -1 |
x=2,y=-1 | 7 |
x=-0,5;y=1,25 | -2,08125 |
4).
(x-5)(3x+3)-3x(x-3)+3x+7
= 3x2+3x-15x-15-3x2+9x+3x+7
=(3x2-3x2)+(3x-15x+9x+3x)-15+7
=0 + 0 -8= -8
Vậy biểu thức được chứng minh
5). Sai đề rồi bn ơi!
1) \(2x^4+5x^2+2=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+1=0\\x^2+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=-\frac{1}{2}\\x^2=-2\end{cases}}\) (vô lý)
=> pt vô nghiệm
2) \(2x^4-7x^2-4=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\2x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=4\\x^2=-\frac{1}{2}\left(vl\right)\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
3) \(x^4-5x^2+4=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x^2=1\\x^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm1\\x=\pm2\end{cases}}\)
4) \(2x^4-20x^2+18=0\)
\(\Leftrightarrow x^4-10x^2+9=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=9\end{cases}\Rightarrow}\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
1. \(2x^4+5x^2+2=0\)
Vì \(2x^4+5x^2+2\ge2\)
=> Pt trên vô nghiệm
2. \(2x^4-7x^2-4=0\)
\(\Leftrightarrow2x^4+x^2-8x^2-4=0\)
\(\Leftrightarrow x^2\left(2x^2+1\right)-4\left(2x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x^2+1\right)=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x^2+1=0\left(vo-ly\right)\\x+2=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
Dùng hằng đẳng thức số 1 : (a + b)2 với a = (2x -1) và b =(x+1)
(2x - 1) 2 + 2(2x-1) (x+1) + (x+1)2 = (2x -1 + x +1)2 = (3x)2 = 9x2
a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)
c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)
\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)
d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)
\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)
e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)
\(minE=-20\Leftrightarrow x=-3\)
f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)
\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)
\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)
Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)
\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)
Mấy câu còn lại làm tương tự nhé em^^