K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
18 tháng 5 2019

3. + \(20A=\frac{21-1}{1\cdot21}+\frac{22-2}{2\cdot22}+...+\frac{100-80}{80\cdot100}\)

\(\Rightarrow20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+...+\frac{1}{80}-\frac{1}{100}\)

\(\Rightarrow20A=\left(1+\frac{1}{2}+...+\frac{1}{80}\right)-\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{100}\right)\)

\(\Rightarrow A=\frac{1}{20}\left[\left(1+\frac{1}{2}+...+\frac{1}{20}\right)-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\right]\)

+ \(80B=\frac{81-1}{1\cdot81}+\frac{82-2}{2\cdot82}+...+\frac{100-2}{20\cdot100}\)

\(=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+...+\frac{1}{20}-\frac{1}{100}\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{20}\right)-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)

\(\Rightarrow B=\frac{1}{80}\left[\left(1+\frac{1}{2}+...+\frac{1}{20}\right)-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\right]\)

Do đó : \(\frac{A}{B}=\frac{\frac{1}{20}}{\frac{1}{80}}=4\)

4. + \(A=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{100}{99}\)

\(=\frac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot99}=\frac{100}{2}=50\)

NV
15 tháng 5 2019

Câu 2:

\(20A=\frac{20}{1.21}+\frac{20}{2.22}+\frac{20}{3.23}+...+\frac{20}{80.100}\)

\(20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+\frac{1}{3}-\frac{1}{23}+...+\frac{1}{80}-\frac{1}{100}\)

\(20A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{80}-\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{100}\right)\)

\(20A=1+\frac{1}{2}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\) (1)

Lại có:

\(B=\frac{1}{1.81}+\frac{1}{2.82}+...+\frac{1}{20.100}\)

\(\Rightarrow80B=\frac{80}{1.81}+\frac{80}{2.82}+...+\frac{80}{20.100}\)

\(80B=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+...+\frac{1}{20}-\frac{1}{100}\)

\(80B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)(2)

Từ (1) và (2) suy ra \(20A=80B\)

\(\Rightarrow\frac{A}{B}=\frac{80}{20}=4\)

NV
15 tháng 5 2019

Câu 1:

\(\frac{x}{16}-\frac{1}{y}=\frac{1}{32}\)

\(\Leftrightarrow\frac{xy-16}{16y}=\frac{1}{32}\)

\(\Leftrightarrow\frac{xy-16}{y}=\frac{1}{2}\)

\(\Leftrightarrow2xy-32=y\)

\(\Leftrightarrow\left(2x-1\right).y=32\)

Tới đây ta nhận xét do \(2x-1\) luôn lẻ với mọi x nguyên nên \(2x-1\) là ước lẻ của 32

\(\Rightarrow2x-1=\left\{1;-1\right\}\)

Vậy: \(\left\{{}\begin{matrix}2x-1=1\\y=32\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=32\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2x-1=-1\\y=-32\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-32\end{matrix}\right.\)

Có 2 cặp số nguyên thỏa mãn là \(\left(x;y\right)=\left(1;32\right);\left(0;-32\right)\)

24 tháng 4 2019

20A=20/1.21+20/2.22+...+20/80.100

=1-1/21+1/2-1/22+...+1/80-1/100

=(1+1/2+...+1/80)-(1/21+1/22+...+1/100)

80B=80/1.81+80/2.82+...+8/20.100

=1-1/81+1/2-1/82+...+1/20-1/100

=(1+1/2+...+1/20)-(1/81+1/82+...+1/100)

=(1+1/2+1/3+...+1/20+1/21+1/22+...+1/80)-(1/21+1/22+...1/80+1/81+1/82+...1/100)

=>20A=80B

=>A=4B

13 tháng 2 2018

\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)

\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)

\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)

\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

\(A=3-\left(1-\frac{1}{8}\right)\)

\(A=3-\frac{5}{8}\)

\(A=\frac{19}{8}\)

17 tháng 3 2020

ta có: \(A=\frac{1}{1.21}+\frac{1}{2.22}+\frac{1}{3.23}+...+\frac{1}{80.100}\)

\(20A=\frac{20}{1.21}+\frac{20}{2.22}+\frac{20}{2.23}+...+\frac{20}{80.100}\)

\(20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+\frac{1}{3}-\frac{1}{23}+...+\frac{1}{80}-\frac{1}{100}\)

\(20A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{80}-\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{100}\right)\)

\(20A=1+\frac{1}{2}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+\frac{1}{83}+...+\frac{1}{100}\right)\)

lại có: \(B=\frac{1}{1.81}+\frac{1}{2.82}+\frac{1}{3.83}+...+\frac{1}{20.100}\)

\(80B=\frac{80}{1.81}+\frac{80}{2.82}+\frac{80}{3.83}+...+\frac{80}{20.100}\)

\(80B=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+\frac{1}{3}-\frac{1}{83}+...+\frac{1}{20}-\frac{1}{100}\)

\(80B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+\frac{1}{83}+...+\frac{1}{100}\right)\)

Vậy 20A = 80B

=> \(\frac{A}{B}=\frac{80}{20}=4\)

17 tháng 3 2020

\(A=\frac{1}{1.21}+\frac{1}{2.22}+\frac{1}{3.23}+...+\frac{1}{80.100}\)

\(20A=\frac{20}{1.21}+\frac{20}{2.22}+\frac{20}{3.23}+...+\frac{20}{80.100}\)

\(20A=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+\frac{1}{3}-\frac{1}{23}+...+\frac{1}{80}-\frac{1}{100}\)

\(20A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{80}-\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{100}\right)\)

\(20A=1+\frac{1}{2}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)(1)

Lại có : 

\(B=\frac{1}{1.81}+\frac{1}{2.82}+\frac{1}{3.83}+...+\frac{1}{20.100}\)

\(\Rightarrow80B=\frac{80}{1.81}+\frac{80}{2.82}+...+\frac{80}{20.100}\)

\(80B=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}+...+\frac{1}{20}-\frac{1}{100}\)

\(80B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)(2)

Từ (1) và (2) , suy ra : \(20A=80B\)

\(\Rightarrow\frac{A}{B}=\frac{80}{20}=4\)

29 tháng 4 2019

đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)

29 tháng 4 2019

Bài 1: <Cho là câu a đi>:

a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\) 

\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\) 

\(\rightarrow x+1=50\rightarrow x=49\) 

Vậy x = 49.

bài 1 : với giá trị nào của x\(\in\)Z, các phân số sau là một số nguyên                                                                                                  A=\(\frac{3}{x-1}\) B= \(\frac{x-2}{x+3}\)C = \(\frac{2.x+1}{x-3}\)bài 2 : tìm n\(\in\)Z để tích hai phân số \(\frac{19}{n-1}\)( với n \(\ne\)1) và \(\frac{n}{9}\) có giá trị là số nguyên.bài 3 :...
Đọc tiếp

bài 1 : với giá trị nào của x\(\in\)Z, các phân số sau là một số nguyên                                                                                                  A=\(\frac{3}{x-1}\) 

B= \(\frac{x-2}{x+3}\)

C = \(\frac{2.x+1}{x-3}\)

bài 2 : tìm n\(\in\)Z để tích hai phân số \(\frac{19}{n-1}\)( với n \(\ne\)1) và \(\frac{n}{9}\) có giá trị là số nguyên.

bài 3 : tính

A= \(\left(1-\frac{2}{5}\right)\)\(\left(1-\frac{2}{7}\right)\).\(\left(1-\frac{2}{9}\right)\).......\(\left(1-\frac{2}{2011}\right)\)

B= \(\left(1+\frac{2}{3}\right)\).\(\left(1+\frac{2}{5}\right)\).\(\left(1+\frac{2}{7}\right)\).........\(\left(1+\frac{2}{2009}\right)\)\(\left(1+\frac{2}{2011}\right)\)

bài 4 : chứng tỏ rằng 

\(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ .......+ \(\frac{1}{49.50}\)< 1

bài 5: rút gọn biểu thức sau

A= \(\frac{3.5.7.11.13.37-10101}{1212120+40404}\)

1
20 tháng 4 2017

bài 1 A là số nguyên <=> 3 chia hết cho (x-1) <=> (x-1) thuộc Ư(3) = { 1;-1;3;-3}

<=> x thuộc {2;0;4;-2}