K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2016

Biết CM

29 tháng 8 2016

Chứng minh hộ tớ với riêng ý a cũng được

13 tháng 8 2016

\(\frac{1}{5}A=\frac{1}{5}.\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{20}}\right)\)

\(\Rightarrow\frac{1}{5}A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{20}}\)

\(\Rightarrow\frac{1}{5}A-A=\left(\frac{1}{5^2}+...+\frac{1}{5^{21}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{20}}\right)\)

\(-\frac{4}{5}A=\frac{1}{5^{21}}-\frac{1}{5}\)

\(\Rightarrow A=\left(\frac{1}{5^{21}}-\frac{1}{5}\right):\left(-\frac{4}{5}\right)\)

các câu còn lại tương tự thôi

13 tháng 8 2016

B1 c2

dùng xích ma \(\text{∑}^{20}_1\left(\frac{1}{5^x}\right)=0,25=\frac{1}{4}\)

chỗ phía dưới là 1 nha nó bị che

27 tháng 6 2019

A chia hết cho 2 sẵn rồi 

CM A chia hết cho 30:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+....+2^{96}\left(2+2^2+2^3+2^4\right)\)

\(=30.\left(1+2^4+...+2^{96}\right)⋮30\)

27 tháng 6 2019

Gợi ý;

B chia hết cho 5 sắn rồi

chia hết cho 6 nhóm 2 số vào

Chi hết cho 31 nhóm 3 số vào

3 tháng 8 2018

Bài 1:

\(a)\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^5.5^5}{100^5}=\dfrac{100^5.3125}{100^5}=3125\)

3 tháng 8 2018

2.

a)A có 36 sô hạng , chia A thành 18 nhóm , mỗi nhóm có 2 số hạng .

Ta có : A = \(\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{35}+3^{36}\right)\)

\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{35}.\left(1+3\right)\)

\(A=3.4+3^3.4+...+3^{35}.4\)

\(A=4.\left(3+3^3+...+3^{35}\right)\)

Vậy A chia hết cho 4 .

b)Chia A thành 13 nhóm mỗi nhóm có 3 số hạng

Ta có : \(A=\left(3+3^2+3^3\right)+...+\left(3^{34}+3^{35}+3^{36}\right)\)

\(A=3.\left(1+3+9\right)+...+3^{34}.\left(1+3+9\right)\)

A=\(3.13+...+3^{34}.13\)

A= \(13.\left(3+..+3^{34}\right)\)

Vậy A chia hết cho 13

c) Tương tự như câu a và câu b

Bài 2: 

a: \(3B=3+3^2+3^3+...+3^{90}\)

\(\Leftrightarrow2B=3^{90}-1\)

hay \(B=\dfrac{3^{90}-1}{2}\)

b: \(B=\left(1+3+3^2+3^3+3^4+3^5\right)+3^6\left(1+3+3^2+3^3+3^4+3^5\right)+...+3^{84}\left(1+3+3^2+3^3+3^4+3^5\right)\)

\(=384\cdot\left(1+3^6+...+3^{84}\right)⋮52\)