Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{5}A=\frac{1}{5}.\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{20}}\right)\)
\(\Rightarrow\frac{1}{5}A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{20}}\)
\(\Rightarrow\frac{1}{5}A-A=\left(\frac{1}{5^2}+...+\frac{1}{5^{21}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{20}}\right)\)
\(-\frac{4}{5}A=\frac{1}{5^{21}}-\frac{1}{5}\)
\(\Rightarrow A=\left(\frac{1}{5^{21}}-\frac{1}{5}\right):\left(-\frac{4}{5}\right)\)
các câu còn lại tương tự thôi
B1 c2
dùng xích ma \(\text{∑}^{20}_1\left(\frac{1}{5^x}\right)=0,25=\frac{1}{4}\)
chỗ phía dưới là 1 nha nó bị che
A chia hết cho 2 sẵn rồi
CM A chia hết cho 30:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+....+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(=30.\left(1+2^4+...+2^{96}\right)⋮30\)
Gợi ý;
B chia hết cho 5 sắn rồi
chia hết cho 6 nhóm 2 số vào
Chi hết cho 31 nhóm 3 số vào
Bài 1:
\(a)\dfrac{20^5.5^{10}}{100^5}=\dfrac{20^5.5^5.5^5}{100^5}=\dfrac{100^5.3125}{100^5}=3125\)
2.
a)A có 36 sô hạng , chia A thành 18 nhóm , mỗi nhóm có 2 số hạng .
Ta có : A = \(\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{35}+3^{36}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{35}.\left(1+3\right)\)
\(A=3.4+3^3.4+...+3^{35}.4\)
\(A=4.\left(3+3^3+...+3^{35}\right)\)
Vậy A chia hết cho 4 .
b)Chia A thành 13 nhóm mỗi nhóm có 3 số hạng
Ta có : \(A=\left(3+3^2+3^3\right)+...+\left(3^{34}+3^{35}+3^{36}\right)\)
\(A=3.\left(1+3+9\right)+...+3^{34}.\left(1+3+9\right)\)
A=\(3.13+...+3^{34}.13\)
A= \(13.\left(3+..+3^{34}\right)\)
Vậy A chia hết cho 13
c) Tương tự như câu a và câu b
Bài 2:
a: \(3B=3+3^2+3^3+...+3^{90}\)
\(\Leftrightarrow2B=3^{90}-1\)
hay \(B=\dfrac{3^{90}-1}{2}\)
b: \(B=\left(1+3+3^2+3^3+3^4+3^5\right)+3^6\left(1+3+3^2+3^3+3^4+3^5\right)+...+3^{84}\left(1+3+3^2+3^3+3^4+3^5\right)\)
\(=384\cdot\left(1+3^6+...+3^{84}\right)⋮52\)