Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) chia hết cho 2 :
Dễ thấy tất cả các hạng tử của 2 đều chia hết cho 2
=> A chia hết cho 2
+) chia hết cho 3 :
A = 2 + 22 + ... + 299 + 2100
A = ( 2 + 22 ) + ... + ( 299 + 2100 )
A = 2 ( 1 + 2 ) + ... + 299 ( 1 + 2 )
A = 2 . 3 + ... + 299 . 3
A = 3 . ( 2 + ... + 299 ) chia hết cho 3
+) chia hết cho 15 : tương tự
Gợi ý : nhóm 4 số một
+) chia hết cho 31 : tương tự
Gợi ý : nhóm 5 số một
minh chi lam dc cau a thoi nha nhung hay t i c k cho minh
3 + 32 = 12 chia het cho 4 3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 32 ] + ....+38 . [ 3 + 32 ]
=30 . 12 + 32 . 12 +.....+ 38 . 12 = 12.[30 + 32 +....+ 38 ]
vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4
\(A=2^0+2^1+2^2+2^3+...+2^{99}\)
\(=1+2+2^2+2^3+...+2^{99}\)
\(=\left(1+2+2^2+2^3+2^4\right)+...+\left(2^{95}+2^{96}+2^{97}+2^{98}+2^{99}\right)\)
\(=\left(1+2+4+8+16\right)+...+2^{95}.\left(1+2+2^2+2^3+2^4\right)\)
\(=31+...+2^{95}.31\)
\(=31.\left(1+...+2^{95}\right)⋮31\)
\(\Rightarrow\) \(A⋮31\)
a) Đặt biểu thức trên là A, ta có:
A = 21 + 22 + 23 + 24 + ... + 299 + 2100
=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)
=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)
=> A = 21.3 + 23.3 + ... + 299.3
=> A = 3(21 + 23 + ... + 299)
=> A ⋮ 3
\(26=13.2\)
\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)
\(s=3.13+3^413+.....+3^{2012}.13\)
\(s=13.\left(3+3^4+....+3^{2012}\right)\)
\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)
\(s=3.4+3^3.4+....+3^{2015}.4\)
\(s=4.\left(3+3^3+.....+3^{2015}\right)\)
\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)
\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)
\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)
A=2+2^2+...........+2^60
c\m c\h cho 3:2+2^2+....+2^60=2.(1+2)+........+2^59(1+2)
=2.3+.........+2^59.3
=(2+...+2^59).3
=>A chia hết cho 3
cau tiếp tuong tu
3
Ta chứng minh A chia hết cho 3:
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2.(1+2)+2^3.(1+2)+...+2^59.(1+2)
=2.3+2^3.3+...+2^59.3
=3.(2+2^3+...+2^59) chia hết cho 3
Ta chứng minh A chia hết cho 7
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
=2.(1+2+4)+2^4.(1+2+4)+...+2^58.(1+2+4)
=2.7+2^4.7+...+2^58.7
=7.(2+2^4+...+2^58) chia hết cho 7
Ta chứng minh A chia hết cho 15
A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^57+2^58+2^59+2^60)
=2.(1+2+4+8)+2^5.(1+2+4+8)+....+2^57.(1+2+4+8)
=2.15+2^5.15+..+2^57.15
=15.(2+2^5+...+2^57) chia hết cho 15
2n+13 chia hết cho 2n+5
=>[( 2n+13)-(2n+5)] chia hết cho 2n+5
=>8 chia hết cho 2n+5=>2n+5 la uoc của 8
U(8)={1;2;4;8}
còn lại bạn tự giải quyết nha
a) ta có: x+16= (x+1)+15
mà x+1 chia hết cho x+1
suy ra 15 chia hết cho x+1
suy ra x+1 thuộc Ư(15)
Ư(15)= 1;3;5;15
TH1: x+1=1 suy ra x=0
TH2: x+1=3 suy ra x=2
TH3: x+1 = 5 suy ra x =4
TH4 x+1 = 15 suy ra x=14
Vậy x=0;2;4 hoặc 14
b) x lớn nhất và 36;45;18 chia hết cho x
suy ra x thuộc ƯCLN(36;45;18)
Ta có: 36= 3^2.2^2
45= 5.3^2
18=3^2.2
suy ra ƯCLN(36;45;18) = 3^2=9
suy ra x=9
Vậy x=9
c) 150;84;30 chia hết cho x suy ra x thuộc ƯC (150;84;30)
ta có: 150=5^2.3.2
84=7.3.2^2
30=5.3.2
suy ra ƯCLN(150;84;30)=2.3=6
Ư(6)= x nên x nhận các giá trị là 1;2;3;6
mà 0<x<16 nên x =1;2;3;6
Vậy x = 1;2;3;6
d) 10^15+8 = 100....000 + 8 ( có 15 số 0)
= 100....0008
Vì tận cùng là 8 nên 10^15+8 chia hết cho 2
Vì tổng các chữ số là 9 nên 10^15 chia hết cho 9
Vậy 10615 chia hết cho 2 và 9
b2) Nhóm 2 số 1 cặp, ta có:
A= 2.(1+2) + 2^3 . (1+2) + .....+ 2^2009. (1+2)
A= 2.3+2^3.3+...+2^2009.3
A= 3. ( 2+2^3+...+2^2009) chia hết cho 3
Vậy A chia hết cho 3
Nhóm 3 số 1 cặp
A= 2.(1+2+2^2) + 2^4.(1+2+2^2)+....+2^2008. ( 1+2+2^2)
A= 2.7+2^3.7+...+2^2008.7
A= 7. (2+2^4+...+ 2^2008) chia hết cho 7
Vậy A chia hết cho 7
b) 2.A= 2.(1+2+2^2+...+2^2010)
2.A= 2+2^2+2^3+...+2^2010+2011
2.A - A = (2+2^2+2^3+...+2^2011) - (1+2+2^2+...+2^2010)
1.A = 2^2011 - 1
Ta thấy: A= 2^2011-1 B= 2^2011-1
suy ra A=B
Vậy A=B
c) A<B