K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 9 2017

Lời giải:

Ta có:

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{99}\)

\(\Rightarrow \frac{1}{2}B=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+....+\left(\frac{1}{2}\right)^{100}\)

Trừ theo vế:

\(\Rightarrow \frac{B}{2}=\left(\frac{1}{2}\right)^{100}-\frac{1}{2}\)

\(\Leftrightarrow B=\left(\frac{1}{2}\right)^{99}-1<2-1\Leftrightarrow B< 1\)

Vì \(\left(\frac{1}{2}\right)^{99}\not\in\mathbb{Z};1\in\mathbb{Z}\Rightarrow B\not\in \mathbb{Z}\)

Ta có đpcm.

13 tháng 9 2017

\(PHUCDZ=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}\)

\(PHUCDZ=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\)

\(2PHUCDZ=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\right)\)

\(2PHUCDZ=1+\dfrac{1}{2}+...+\dfrac{1}{2^{98}}\)

\(2PHUCDZ-PHUCDZ=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{99}}\right)\)

\(PHUCDZ=1-\dfrac{1}{2^{99}}< 1\)

\(\Rightarrowđpcm\)

\(PHUCDZ=1-\dfrac{1}{2^{99}}=\dfrac{2^{99}}{2^{99}}-\dfrac{1}{2^{99}}=\dfrac{2^{99}-1}{2^{99}}\)

\(2^{99}-1\)\(2^{99}\) là 2 số nguyên tố cùng nhau nên không thể rút gọn cho 1 số nào khác 1.

Vậy \(PHUCDZ\ne Z\Rightarrowđpcm\)

30 tháng 3 2017

b) Giải:

ĐK: \(a\ne-b\)

Ta có:

\(3a^2+b^2=4ab\)

\(\Leftrightarrow4a^2-4ab+b^2-a^2=0\)

\(\Leftrightarrow\left(2a-b\right)^2-a^2=0\)

\(\Leftrightarrow\left(3a-b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3a-b=0\\a-b=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{b}{3}\\a=b\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=\dfrac{b}{3}\Leftrightarrow P=\dfrac{\dfrac{b}{3}-b}{\dfrac{b}{3}+b}=\dfrac{-1}{2}\\a=b\Leftrightarrow P=\dfrac{a-a}{a+a}=\dfrac{0}{2a}=0\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}P=\dfrac{-1}{2}\\P=0\end{matrix}\right.\)

27 tháng 8 2017

\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)

\(B=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\)

\(2B=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\right)\)

\(2B=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}\)

\(2B-B=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{99}}\right)\)

\(B=1-\dfrac{1}{2^{99}}\)

\(B< 1\)

\(\Rightarrowđpcm\)

2 tháng 10 2017

bài 3 : \(\left\{{}\begin{matrix}ab=2\\bc=3\\ca=54\end{matrix}\right.\)

hiển nhiên a;b;c =0 không phải nghiệm

\(\Leftrightarrow\left(abc\right)^2=2.3.54=18^2\)

\(\Leftrightarrow\left[{}\begin{matrix}abc=-18\\abc=18\end{matrix}\right.\)

abc=-18 => c=-9; a=-6; b=-1/3

abc=18 => c=9; a=6; b=1/3

AH
Akai Haruma
Giáo viên
1 tháng 8 2018

Lời giải:

\(A=\frac{1}{2}+(\frac{1}{2})^2+(\frac{1}{2})^3+...+(\frac{1}{2})^{98}+(\frac{1}{2})^{99}\)

\(\Rightarrow 2A=1+\frac{1}{2}+(\frac{1}{2})^2+...+(\frac{1}{2})^{97}+(\frac{1}{2})^{98}\)

Trừ theo vế:

\(2A-A=1-(\frac{1}{2})^{99}\)

\(A=1-(\frac{1}{2})^{99}< 1\)

Ta có đpcm.

3 tháng 8 2018

ta có : \(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}\)

\(\Rightarrow\dfrac{1}{2}B=\dfrac{1}{2}\left(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}\right)=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{100}\) \(\Rightarrow B-\dfrac{1}{2}B=\dfrac{1}{2}B=\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^{100}\)

\(\Rightarrow B=2.\dfrac{1}{2}B=1\left(\dfrac{1}{2}-\left(\dfrac{1}{2}\right)^{100}\right)=1-\left(\dfrac{1}{2}\right)^{99}< 1\)

vậy \(B< 1\)

2B= 1+ 1/2+ (1/2)2+ ....+(1/2)98

_

B= 1/2+ (1/2)2+ ....+(1/2)99

B= 1- (1/2)99 <1

=>B <1

2 tháng 10 2017

bai 1

\(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right).....\left(\dfrac{1}{10}-1\right)\)

\(A=\left(\dfrac{1-2}{2}\right)\left(\dfrac{1-3}{3}\right).....\left(\dfrac{1-9}{10}\right)\)

\(A=-\left(\dfrac{1.2.3.....8.9}{2.3....9.10}\right)=-\dfrac{1}{10}>-\dfrac{1}{9}\)

21 tháng 3 2018

1)\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2017}{2018}\)

\(B=\dfrac{1}{2018}\)

2)a)\(x^2-2x-15=0\)

\(\Leftrightarrow x^2-2x+1-16=0\)

\(\Leftrightarrow\left(x-1\right)^2-16=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

3)\(\dfrac{a}{b}=\dfrac{d}{c}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a}{b}\cdot\dfrac{d}{c}=\dfrac{ad}{bc}\)

Lại có:\(\dfrac{a^2}{b^2}=\dfrac{d^2}{c^2}=\dfrac{a^2+d^2}{b^2+c^2}\)

\(\Rightarrow\dfrac{a^2+d^2}{b^2+c^2}=\dfrac{ad}{bc}\)

4)Ta có:\(g\left(x\right)=-x^{101}+x^{100}-x^{99}+...+x^2-x+1\)

\(g\left(x\right)=-x^{101}+\left(x^{100}-x^{99}+...+x^2-x+1\right)\)

\(g\left(x\right)=-x^{101}+f\left(x\right)\)

\(\Rightarrow f\left(x\right)-g\left(x\right)=f\left(x\right)+x^{101}-f\left(x\right)=x^{101}\)

Tại x=0 thì f(x)-g(x)=0

Tại x=1 thì f(x)-g(x)=1

24 tháng 3 2018

CHu làm cô liễu ko lo làm Mai báo cô