K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

chia hết cho n+1 nha các bạn

30 tháng 12 2021

? nghĩa là    sao

11 tháng 4 2017

Bài 1:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

hay \(\frac{a}{b}=\frac{a+b+c}{b+c+d}\)

\(\frac{b}{c}=\frac{a+b+c}{b+c+d}\)

\(\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

Nhân vế theo vế của 3 đẳng thức trên ta có:

\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)

mà \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\left(đpcm\right)\)

11 tháng 4 2017

Bài 2: Không làm được, thông cảm. Gợi ý: Áp dụng chia tỉ lệ

a) ko có a, b thỏa mãn

b) Giá trị lớn nhất của A = \(\frac{7}{6}\)

c) 16

d)  x = \(\frac{14}{3}\)

e) x=-1

g) n= 7

h) 

j) x=1

k) n=11

 

2 tháng 2 2017

2b nhé bạn!

Giả sử 2002+n2 là số chính phương m2

Hiển nhiên 2002 chia cho 4 dư 2

Ta luôn biết số chính phương chỉ có dạng 4k hoặc 4k+1 (*)

  • Nếu m2 dạng 4k

Thì n2 dạng 4k+2 thì theo (*) đây không là số chính phương

  • Nếu m2 dạng 4k+1

Thì n2 dạng 4k+3 thì theo (*) ta lại thấy đây không là số chính phương

Vậy không tồn tại n để 2002+n2 là số chính phương

9 tháng 8 2015

các bạn giúp mình nhanh với :v