Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
Q=\(\frac{\sqrt{x}-1}{x-\sqrt{x}+1}+\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\) điều kiện x>=0
=\(\frac{x-1+x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
=\(\frac{\sqrt{x}}{x-\sqrt{x}+1}\)
ta thấy cả tử và mẫu đề >=0=> Q>=0
dấu = xảy ra khi x=0
=> Q=0 khi x=0
Ta có: \(P=A\cdot B\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
a) Ta có :
\(\dfrac{1}{\sqrt{x^2-2x-1}}\) xác định khi \(x^2-2x-1=x^2-2x+1-3=\left(x-1\right)^2-1\)
=>\(\left(x-1\right)^2>1< =>x-1>1=>x>2\)
b) c/m tt x>2
\(DK:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}+1\ne0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne-1\end{matrix}\right.\)
\(< =>x\ge0\) ( Vì : \(\forall x\ge0=>\sqrt{x}\ge0\) )
\(B=\dfrac{1}{\sqrt{x}+1}\)
Biểu thức B xác định khi:
\(\left\{{}\begin{matrix}\sqrt{x}+1\ne0\\x\ge0\end{matrix}\right.\)
Mà: \(\sqrt{x}+1\ne0\) (luôn đúng) nên:
\(\Leftrightarrow x\ge0\)
Vậy: ...