Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x-2\sqrt{x-1}}=2\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\Leftrightarrow\left|\sqrt{x-1}-1\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=2\\\sqrt{x-1}-1=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=10\\\sqrt{x-1}=-1\left(vn\right)\end{matrix}\right.\)
Kl: x=10
**khỏi cần đk**
1, đk: \(x>0\) và \(x\ne4\)
Ta có: A=\(\dfrac{1}{2\sqrt{x}-x}=\dfrac{1}{-\left(x-2\sqrt{x}+1\right)+1}=\dfrac{1}{-\left(\sqrt{x}-1\right)^2+1}\)
Ta luôn có: \(-\left(\sqrt{x}-1\right)^2\le0\) với \(x>0\) và \(x\ne4\)
\(\Rightarrow-\left(\sqrt{x}-1\right)^2+1\le1\)
\(\Rightarrow A\ge1\). Dấu "=" xảy ra <=> x=1 (t/m)
Vậy MinA=1 khi x=1
2, đk: \(x\ge0;x\ne1;x\ne9\)
Ta có: B=\(\dfrac{1}{x-4\sqrt{x}+3}=\dfrac{1}{\left(x-4\sqrt{x}+4\right)-1}=\dfrac{1}{\left(\sqrt{x}-2\right)^2-1}\)
Ta luôn có: \(\left(\sqrt{x}-2\right)^2\ge0\) với \(x\ge0;x\ne1;x\ne9\)
\(\Rightarrow\left(\sqrt{x}-2\right)^2-1\ge-1\)
\(\Rightarrow B\le-1\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MaxB=-1 khi x=4
3, đk: \(x\ge0;x\ne15+4\sqrt{11}\)
Ta có: C=\(\dfrac{1}{4\sqrt{x}-x+7}=\dfrac{1}{-\left(x-4\sqrt{x}+4\right)+11}=\dfrac{1}{-\left(\sqrt{x}-2\right)^2+11}\)
Ta luôn có: \(-\left(\sqrt{x}-2\right)^2\le0\) với \(x\ge0;x\ne15+4\sqrt{11}\)
\(\Rightarrow-\left(\sqrt{x}-2\right)^2+11\le11\)
\(\Rightarrow C\ge\dfrac{1}{11}\). Dấu "=" xảy ra <=> x=4 (t/m)
Vậy MinC=\(\dfrac{1}{11}\) khi x=4
\(=\sqrt{2}\left(\dfrac{2+\sqrt{5}}{2+\sqrt{5}+1}+\dfrac{2-\sqrt{5}}{2-\sqrt{5}+1}\right)\)
\(=\sqrt{2}\left(\dfrac{\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\right)\)
\(=\sqrt{2}\cdot\dfrac{6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5}{4}\)
\(=\sqrt{2}\cdot\dfrac{2}{4}=\dfrac{\sqrt{2}}{2}\)
1a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(\sqrt{2-\sqrt{2+\sqrt{2}}}\right)}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{\left(4+\sqrt{8}\right)\left(2-\sqrt{2}\right)}\)
\(=\sqrt{8-4\sqrt{2}-\sqrt{16}+2\sqrt{8}}\)
\(=\sqrt{8-4\sqrt{2}-4+4\sqrt{2}}\)
\(=\sqrt{4}=2\)
1b) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+4\sqrt{3}+3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{25-10\sqrt{3}+3}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{25}=5\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6\right)^2=\left(1-x\right)^2\\-3< =x< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6+x-1\right)\left(2x+6+1-x\right)=0\\-3< =x< =1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x+5\right)\left(x+7\right)=0\\-3< =x< =1\end{matrix}\right.\Leftrightarrow x=-\dfrac{5}{3}\)
b: \(\Leftrightarrow2\cdot3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=2x\)
\(\Leftrightarrow4\sqrt{x-3}=2x\)
\(\Leftrightarrow2\sqrt{x-3}=x\)
\(\Leftrightarrow\sqrt{4x-12}=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=3\\x^2=4x-12\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6\right)^2=\left(1-x\right)^2\\-3< =x< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6+x-1\right)\left(2x+6+1-x\right)=0\\-3< =x< =1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x+5\right)\left(x+7\right)=0\\-3< =x< =1\end{matrix}\right.\Leftrightarrow x=-\dfrac{5}{3}\)
b: \(\Leftrightarrow2\cdot3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=2x\)
\(\Leftrightarrow4\sqrt{x-3}=2x\)
\(\Leftrightarrow2\sqrt{x-3}=x\)
\(\Leftrightarrow\sqrt{4x-12}=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=3\\x^2=4x-12\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)
(AM-GM)
do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)
Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)
\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)
\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)
\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)
\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)
B1.
Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)