Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 11:
(\(\dfrac{11}{4}\). \(\dfrac{-5}{9}\) - \(\dfrac{4}{9}\).\(\dfrac{11}{4}\)).\(\dfrac{8}{33}\)
= \(\dfrac{11}{4}\).(\(\dfrac{-5}{9}\) - \(\dfrac{4}{9}\)). \(\dfrac{8}{33}\)
= \(\dfrac{11}{4}\).(-1).\(\dfrac{8}{33}\)
= - \(\dfrac{2}{3}\)
A = 1 + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +.......+\(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)
3\(\times\) A = 3 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+........+ \(\dfrac{1}{3^{n-1}}\)
3A - A = 3 + \(\dfrac{1}{3}\) - 1 - \(\dfrac{1}{3^n}\)
2A = \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)
A = ( \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)): 2
A = \(\dfrac{7.3^{n-1}-1}{3^n}\) : 2
A = \(\dfrac{7.3^{n-1}-1}{2.3^n}\)
B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+......+\(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)
2B = 2 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) - \(\dfrac{1}{2^3}\)+ \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)
2B + B = 2 - \(\dfrac{1}{2^{100}}\)
3B = 2 - \(\dfrac{1}{2^{100}}\)
B = ( 2 - \(\dfrac{1}{2^{100}}\)): 3
B = \(\dfrac{2.2^{100}-1}{2^{100}}\) : 3
B = \(\dfrac{2^{101}-1}{3.2^{100}}\)
a, ( 1/2 + 1) . ( 1/3 + 1) . (1/4 + 1) ... ( 1/999 + 1)
= 3/2 . 4/3 . 5/4 . 1000/999
= 1/2 . 1/1 . 1/1 ... 1000/1
= 1000/2
= 500
b, (1/2-1) . (1/3-1) . (1/4-1) ... (1/1000-1)
= -1/2 . (-2)/3 . (-3)/4 ... (-999)/1000
= (-1)/1 . (-1)/1 . (-1)/1 ... (-1)/1000
= (-1)/1000
c, 3/2^2 . 8/3^2 . 15/4^2 ... 99/10^2
= 1.3/2.2 * 2.4/3.3 * 3.5/4.4***9.11/10.10
=( 1.2.3...99).(3.4.5...11)/(2.3.4....10).(2.3.4...10)
= 1.11/2.10
= 11/20
a,\(\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{999}+1\right)\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.....\dfrac{1000}{999}\)
\(=\dfrac{3.4.5....1000}{2.3.4....999}=\dfrac{1000}{2}=500\)
b,\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{1000}-1\right)\)
\(=\dfrac{-1}{2}.\dfrac{-2}{3}.\dfrac{-3}{4}.....\dfrac{-999}{1000}\)
=\(\dfrac{-\left(1.2.3....999\right)}{2.3.4....1000}=\dfrac{-1}{1000}\)
c,\(\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}....\dfrac{99}{10^2}\)
\(=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}....\dfrac{9.11}{10.10}\)
\(=\dfrac{1.3.2.4.3.5....9.11}{2.2.3.3.4.4....10.10}\)
\(=\dfrac{1.2.3...9}{2.3.4...10}.\dfrac{3.4.5...11}{2.3.4...10}\)
\(=\dfrac{1}{10}.\dfrac{11}{2}=\dfrac{11}{20}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\frac{4949}{9900}\)
\(A=\frac{4949}{19800}\)
a)=3/2.4/3....1000/99=1000/2(áp dụng phương pháp triệt tiêu). b)= -1/2.-2/3.-3/4....-999/1000=-1/1000(chuyển dấu trừ).