K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

B1:

a) \(9x^2+90x+225-\left(x-7\right)^2\)

= \(9x^2+90x+225-x^2+14x-49\)

= \(8x^2+104x+176\)

= \(\left(x+2\right)\left(x+11\right)\)

b) \(49\left(y-4\right)^2-9y^2-36y+36\)

= \(49\left(y^2-8y+16\right)-9y^2-36y+36\)

= \(49y^2-392y+784-9y^2-36y+36\)

= \(40y^2-428y+820\)

= \(\left(5y-41\right)\left(8y-20\right)\)

B2:

a) A = \(xy-4y-5y+20=xy-9y+20\)

A = \(y\left(x-9\right)+20\)

Với x = 14, y = \(\dfrac{11}{2}\)

A = \(\dfrac{11}{2}\left(14-9\right)+20=47,5\)

b) B = \(x^2+xy-5x-5y\)

B = \(x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)

Với x = -5, y = -8

B = \(\left(-5-8\right)\left(-5-5\right)=130\)

B3:

a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

\(\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\left(2x-5\right)\left(2x+5-2x-7\right)=0\)

\(\left(2x-5\right)\left(-2\right)=0\)

\(x=\dfrac{5}{2}\)

b) \(\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\left(x+3\right)x\left(x-2\right)=0\)

\(\left[{}\begin{matrix}x=-3\\x=0\\x=2\end{matrix}\right.\)

c) \(\left(2x^3+2x^2\right)+\left(3x^2+3\right)=0\)

\(2x^3+5x^2+3=0\)

\(\Rightarrow\) Đề sai rồi, nghiệm khủng bố lắm.

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

15 tháng 9 2018

a) x3 + 2x2 + x

= x3 + x2 + x2 + x

= x2 ( x + 1 ) + x ( x + 1 )

= ( x2 + x ) ( x + 1 )

15 tháng 9 2018

a)=x(x2+2x)

b)=x(x2+2xy+y2-9)

d)=x(x2-3x+2)

18 tháng 12 2017

4.a) \(2x^2-10x-3x-2x^2-26=0\)

\(-13x-26=0\Rightarrow-13\left(x+2\right)=0\)

\(\Rightarrow x=-2\)

b) \(2\left(x+5\right)-x^2-5x=0\)

\(2x+10-x^2-5x=0\Leftrightarrow-x^2-3x+10=0\)

\(-\left(x^2+3x-10\right)=0\)

\(-\left(x^2-2x+5x-10\right)=-\left(x\left(x-2\right)+5\left(x-2\right)\right)=0\)

\(-\left(x-2\right)\left(x+5\right)=0\)

\(\left\{{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

c) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\left(x-8\right)\left(3x+2\right)=0\)

\(\left\{{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

d) \(x^3+x^2-4x-4=0\)

\(x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\left(x+1\right)\left(x^2-4\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)

g) \(\left(x-1\right)\left(2x+3-x\right)=0\)

\(\left(x-1\right)\left(x+3\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

h) \(x^2-4x+8-2x+1=x^2-6x+9=0\)

\(\left(x-3\right)^2=0\Rightarrow x=3\)

11 tháng 7 2017

B1:

a) \(x^3-2x^2+x-2\)

= \(x^2\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+1\right)\)

b) \(2x^3+3x^2-3x-2\)

= \(2x^3-2x^2+5x^2-5x+2x-2\)

= \(2x^2\left(x-1\right)+5x\left(x-1\right)+2\left(x-1\right)\)

= \(\left(x-1\right)\left(2x^2+5x+2\right)\)

= \(\left(x-1\right)\left(2x^2+4x+x+2\right)\)

= \(\left(x-1\right)\left[2x\left(x+2\right)+\left(x+2\right)\right]\)

= \(\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)

c) \(5x^2+5y^2-x^2z+2xyz-y^2z-10xy\)

= \(5\left(x^2+2xy+y^2\right)+z\left(x^2+2xy+y^2\right)\)

= \(5\left(x+y\right)^2+z\left(x+y\right)^2\)

= \(\left(x+y\right)^2\left(5+z\right)\)

d) \(x^3-3x^2y+3xy^2-x+y-y^3\)

= \(\left(x-y\right)^3-\left(x-y\right)\)

= \(\left(x-y\right)\left[\left(x-y\right)^2-1\right]\)

= \(\left(x-y\right)\left(x-y-1\right)\left(x-y+1\right)\)

B2:

a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

\(\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\left(2x-5\right)\left(2x+5-2x-7\right)=0\)

\(\left(2x-5\right).\left(-2\right)=0\)

\(\Rightarrow2x-5=0\Rightarrow x=\dfrac{5}{2}\)

b) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\left(x+3\right)\left(x^2-2x\right)=0\)

\(\left(x+3\right).x.\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\\x=2\end{matrix}\right.\)

c) \(2x^3+3x^2+2x+3=0\)

\(x^2\left(2x+3\right)+\left(2x+3\right)=0\)

\(\left(2x+3\right)\left(x^2+1\right)=0\)

Ta thấy \(x^2+1>0\) với mọi x

\(\Rightarrow2x+3=0\Rightarrow x=\dfrac{-3}{2}\)

11 tháng 7 2017

Các bạn ơi giúp mình với!!!eoeoeoeoeoeo

22 tháng 10 2018

\(A=4x^2+4x+11\)

\(=\left(4x^2+4x+1\right)+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Min A = 10 khi:  2x + 1 = 0

                      <=> x = -1/2

10 tháng 7 2020

jbdgvsvvsgvhvhb

2 tháng 10 2018

Mấy câu trên dễ

\(M=4a^2-6a+12\)

\(M=\left(2a\right)^2-2\cdot2a\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{39}{4}\)

\(M=\left(2a-\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\forall x\left(đpcm\right)\)

2 tháng 10 2018

1. a) 2x2y - 3xy2 - 6x + 9y = 2x( xy - 3 ) - 3y ( xy - 3) = ( 2x - 3y)(xy - 3)

b) x2 - 2x + 8 = x2 - 2x + 12 - 1 + 9 = ( x - 1 )2 + 32 ( xem lại đề bài )

2. a) ( 2x - 1) 2 - (2x-1)(2x+3) = 5

(2x-1)(2x-1-2x-3) = 5

-4(2x-1) = 5

2x - 1 = -1,25

2x = -0,25

x= -0,125

b) x(x-9 ) = 0

x= 0 hoặc x = 9

c, ko hiểu

3, M = (2a)2 - 2.2a.1,5 + ( 1,5)2 + 9,75

M= ( 2a - 1,5)2 + 9,75

Vì ( 2a - 1,5 )2 \(\ge\)\(\forall x\)

\(\Rightarrow\)( 2a - 1,5)2 + 9,75 \(\ge9,75\forall x\)

Vậy biểu thức trên luôn dương

17 tháng 12 2018

Bài 1:

a) Sửa đề \(x\left(x+y\right)-3y\left(x+y\right)\)

\(=\left(x+y\right)\left(x-3y\right)\)

b) \(x^2+2019x-xy-2019y\)

\(=x\left(x+2019\right)-y\left(x+2019\right)\)

\(=\left(x+2019\right)\left(x-y\right)\)

c) \(x^2-9y^2-4x+4\)

\(=\left(x^2-4x+4\right)-9y^2\)

\(=\left(x-2\right)^2-\left(3y\right)^2\)

\(=\left(x-2-3y\right)\left(x-2+3y\right)\)

d) \(3x^2-5x+2\)

\(=3x^2-3x-2x+2\)

\(=3x\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(3x-2\right)\)

Bài 2:

a) \(\left(6x^3y^3-27xy^2\right):\left(3x^2y\right)-2xy^2\)

\(=6x^3y^3:3x^2y-27xy^2:3x^2y-2xy^2\)

\(=2xy^2-\dfrac{9y}{x}-2xy^2\)

\(=-\dfrac{9y}{x}\)

b) \(\dfrac{2}{x-2}+\dfrac{1-2x}{x+2}+\dfrac{3x+2}{4-x^2}\)

\(=\dfrac{2}{x-2}+\dfrac{1-2x}{x+2}-\dfrac{3x+2}{x^2-4}\)

\(=\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{\left(1-2x\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{3x+2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2\left(x+2\right)+\left(1-2x\right)\left(x-2\right)-3x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{2x+4+x-2-2x^2+4x-3x-2}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-2x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-2x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{-2x}{x+2}\)

Bài 3:

a) \(3x\left(2x-3\right)-x\left(6x+4\right)=7-12x\)

\(\Rightarrow6x^2-9x-6x^2-4x=7-12x\)

\(\Rightarrow-13x=7-12x\)

\(\Rightarrow-13x+12x-7=0\)

\(\Rightarrow-x-7=0\)

\(\Rightarrow-x=7\)

\(\Rightarrow x=-7\)

b) \(3\left(x-5\right)-2x^2+10x=0\)

\(\Rightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(3-2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

21 tháng 11 2016

ôi mai dê

21 tháng 11 2016

mấy bài này max dễ bn đăng từng phần 1 mk lm cho