K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

28 tháng 5 2017

a)\(9x^2-6x+2=\left(9x^2-6x+1\right)+1=\left(3x-1\right)^2+1\)

Vì \(\left(3x-1\right)^2\ge0\forall x\Rightarrow9x^2-6x+2=\left(3x-1\right)^2+1\ge1>0\forall x\)

=>Biểu thức luôn dương với mọi x

b)\(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(1+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

c)\(2x^2+2x+1=\left(2x^2+2x+\frac{1}{2}\right)+\frac{1}{2}=2\left(x^2+x+\frac{1}{4}\right)+\frac{1}{2}=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)

28 tháng 5 2017

cho hỏi công tử bột là j

19 tháng 6 2018

a. \(2x^2-4x+10=x^2-2x+1+x^2-2x+1+8=\left(x-1\right)^2+\left(x-1\right)^2+8=2\left(x-1\right)^2+8\)

Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+8\ge8\)

Vậy...

b. \(x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy..

c. \(2x^2-6x+5=x^2-4x+4+x^2-2x+1=\left(x-2\right)^2+\left(x-1\right)^2\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\Rightarrow\left(x-2\right)^2+\left(x-1\right)^2\ge0\)

Vậy...

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4) 2. C/m biểu thức sau không phụ thuộc vào biến x,y a) A= (3x - 5)(2x +11) - (2x +3)(3x+7) b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1) 3. Phân tích đa thức thành nhân tử: a) 81x4 + 4 b) x2 + 8x + 15 c) x2 - x - 12 4. Tìm x biết: a) 2x (x-5) - x(3+2x) = 26 b) 5x (x-1) = x -1 c) 2(x+5) - x2 - 5x = 0 d) (2x-3)2 - (x+5)2 = 0 e) 3x3 - 48x = 0 f) x3 + x2 -4x = 4 g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x...
Đọc tiếp

1. Thực hiện phép tính: ( 27x3 - 8 ) : (6x + 9x2 +4)

2. C/m biểu thức sau không phụ thuộc vào biến x,y

a) A= (3x - 5)(2x +11) - (2x +3)(3x+7)

b) B = (2x + 3)(4x2 - 6x +9) - 2(4x3 - 1)

3. Phân tích đa thức thành nhân tử:

a) 81x4 + 4

b) x2 + 8x + 15

c) x2 - x - 12

4. Tìm x biết:

a) 2x (x-5) - x(3+2x) = 26

b) 5x (x-1) = x -1

c) 2(x+5) - x2 - 5x = 0

d) (2x-3)2 - (x+5)2 = 0

e) 3x3 - 48x = 0

f) x3 + x2 -4x = 4

g) (2x + 5)2 + (4x + 10)(3-x) + x2 - 6x +9=0

5. C/m rằng biểu thức

A = -x(x-6) - 10 luôn luôn âm với mọi x

B = 12x - 4x2 - 14 luôn luôn âm với mọi x

C = 9x2 -12x + 11 luôn luôn dương với mọi x

D = x2 - 2x + 9y2 -6y + 3 luôn luôn dương với mọi x, y.

6. Cho các phân thức sau

\(A=\dfrac{2x+6}{\left(x+3\right)\left(x-2\right)}\)

\(B=\dfrac{x^2-9}{x^2-6x+9}\)

\(C=\dfrac{9x^2-16}{3x^2-4x}\)

\(D=\dfrac{x^2+4x+4}{2x+4}\)

\(E=\dfrac{2x-x^2}{x^2-4}\)

\(F=\dfrac{3x^2+6x+12}{x^3-8}\)

a) Với điều kiện nào của x thì giá trị của các phân thức trên xác định

b) Tìm x để giá trị của các phân thức trên bằng 0

c) Rút gọn các phân thức trên.

7. Thực hiện các phép tính sau:

a) \(\dfrac{x+1}{2x+6}+\dfrac{2x+3}{x^2+3x}\)

b) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)

c) \(\dfrac{3}{x+y}-\dfrac{3x-3y}{2x-3y}.\left(\dfrac{2x-3y}{x^2-y^2}-2x+3y\right)\)

d) \(\dfrac{5}{2x-4}+\dfrac{7}{x+2}-\dfrac{10}{x^2-4}\)

e) \([\dfrac{2x-3}{x\left(x+1\right)^2}+\dfrac{4-x}{x\left(x+1\right)^2}]:\dfrac{4}{3x^2+3x}\)

g) \(\dfrac{1}{x-1}-\dfrac{x^3-x}{x^2+1}.\left(\dfrac{1}{x^2-2x+1}+\dfrac{1}{1-x^2}\right)\)

8. Cho biểu thức \(A=\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) ( với x \(\ne\pm2\) )

a) Rút gọn biểu thức A

b) Chứng tỏ rằng với mọi x thỏa mãn -2 < x <2, x \(\ne\) -1 phân thức luôn có giá trị âm.

4
23 tháng 12 2017

Vì dài quá nên mình chỉ có thể trả lời được mấy câu thôi

Bài 1:

27x3 - 8 : (6x + 9x2 +4)

= (3x - 2) (9x2 + 6x + 4) : (9x2 + 6x + 4)

= 3x - 2

Bài 3:

a, 81x4 + 4 = (9x2)2 + 36x2 + 4 - 36x2

= (9x2 + 2)2 - (6x)2

= (9x2 + 6x + 2)(9x2 - 6x + 2)

b, x2 + 8x + 15 = x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c, x2 - x - 12 = x2 + 3x - 4x - 12

= x(x + 3) - 4(x + 3)

= (x + 3) (x - 4)

23 tháng 12 2017

Câu 1:

(27x3 - 8) : (6x + 9x2 + 4)

= (3x - 2)(9x2 + 6x + 4) : (6x + 9x2 + 4)

= 3x - 2

Câu 2:

a) (3x - 5)(2x+ 11) - (2x + 3)(3x + 7)

= 6x2 + 33x - 10x - 55 - 6x2 - 14x - 9x - 21

= -76

⇒ đccm

b) (2x + 3)(4x2 - 6x + 9) - 2(4x3 - 1)

= 8x3 + 27 - 8x3 + 2

= 29

⇒ đccm

Câu 3:

a) 81x4 + 4

= (9x2)2 + 22

= (9x2 + 2)2 - (6x)2

= (9x2 - 6x + 2)(9x2 + 6x + 2)

b) x2 + 8x + 15

= x2 + 3x + 5x + 15

= x(x + 3) + 5(x + 3)

= (x + 3)(x + 5)

c) x2 - x - 12

= x2 - 4x + 3x - 12

= x(x - 4) + 3(x - 4)

= (x - 4)(x + 3)

15 tháng 8 2018

a) \(x^2-x+1=x^2-\frac{1}{2}.x.2+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(\forall x\right)\) và \(\frac{3}{4}>0\)

Nên \(x^2-x+1\) luôn dương với mọi giá trị của x

b) \(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}>0\)

Nên x2 + x + 2 luôn dương với mọi giá trị của x

c) \(-a^2+a-3=-\left(a^2-a+3\right)=-\left(a^2-2.a.\frac{1}{2}+\frac{1}{4}\right)-\frac{11}{4}\)

                                             \(=-\left(a-\frac{1}{2}\right)^2+\frac{-11}{4}\)

Vì \(\left(a-\frac{1}{2}\right)^2\ge0\left(\forall a\right)\Rightarrow-\left(a-\frac{1}{2}\right)^2< 0\left(\forall a\right)\)

Và \(\frac{-11}{4}< 0\)

Nên -a2 + a - 3 luôn âm với mọi giá trị của a

15 tháng 8 2018

a) x^2 - x+1

=x^2 - 2.x.1/2 + (1/2)^2-(1/2)^2 +1

=(x-1/2)^2 - 1/4 +1

=(x-1/2)^2 + 3/4

ta thấy ; (x-1/2)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R

     (=)   (x-1/2)^2 + 3/4 >0 với mọi x thuộc R

hay x^2 -x + 1 luôn dương

b) x^2 + x +2

=x^2 + 2.x.1/2 + ( 1/2)^2 -(1/2)^2 +2

= ( x+1/2)^2 -1/4 +2

= (x+1/2)^2 +7/4

ta thấy : (x + 1/2)^2 lớn hơn hoặc bằng 0 với mọi x thuộc R

       (=) (x + 1/2)^2  + 7/4 > 0 với mọi x thuộc R

hay x^2 + x + 2 luôn dương

c)-a^2 + a -3 

= -( a^2 -a +3 )

= - (a^2-2a1/2+<1/2>^2 -<1/2>^2 + 3 )

= - ( <a-1/2>^2 -1/4 +3)

= - ( <a-1/2>^2 +11/4) 

= -(a-1/2)^2 -11/4

ta thấy : - (a-1/2)^2 nhỏ hơn hoặc bằng 0 với mọi x thuộc R 

          (=) -(a-1/2)^2 - 11/4 < 0 với mọi x thuộc R

hay -a^2 + a -3 luôn âm

d) xin lỗi mình chưa giải kịp 

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

1 tháng 8 2016

ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi

a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0

b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)

21 tháng 7 2016

a, Ta có: A=x2+2x+3 =x2+2x+1+2

                  = (x+1)2+2>0

b, B= -(x2-4x+5) = -(x2-4x+4)-1

       = -(x-2)2-1<0

Chúc bạn học tốt!

21 tháng 7 2016

a)x2+2x+3

=x2+2.x.1+12+2

=(x+1)2+2

         Vì (x+1)2\(\ge0\)

   Suy ra:(x+1)2+2\(\ge2\)(đpcm)

b)-x2+4x-5

=-(x2-4x+5)

=-(x2-2.2x+4)-1

=-(x-2)2-1

             Vì -(x-2)2\(\le0\)

     Suy ra -(x-2)2-1\(\le-1\)(đpcm)

18 tháng 9 2020

a) \(A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\)

Vì \(\left(x-1\right)^2\ge0;\forall x\)

\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)

b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được 

\(B=4x^2+4x+11\)

\(=4\left(x^2+x+\frac{11}{4}\right)\)

\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)

\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)

\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)

c) Tìm GTLN nhé 

 \(C=5-8x-x^2\)

\(=-x^2-2.x.4-16+16+5\)

\(=-\left(x+4\right)^2+21\)

Vì \(-\left(x+4\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)

Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)

                     \(\Leftrightarrow x=-4\)

Vậy\(C_{max}=21\Leftrightarrow x=-4\)

18 tháng 9 2020

A = x2 - 2x + 5

= ( x2 - 2x + 1 ) + 4

= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

B = 4x2 + 4x + 11

= ( 4x2 + 4x + 1 ) + 10

= ( 2x + 1 )2 + 10 ≥ 10 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = 5 - 8x - x2

= -( x2 + 8x + 16 ) + 21

= -( x + 4 )2 + 21 ≤ 21 ∀ x

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxC = 21 <=> x = -4