Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
trong tam giac AHC co \(AH=AC\cdot\sin C=35\cdot\sin50\approx26,8\)
ap dung dl pitago vao AHC ta tinh dc \(HC=AC^2-AH^2\approx22,5\)
tg tu trong tam giac ABH co \(BH=\cot60\cdot26,8\approx15,5\)
\(\Rightarrow BC=BH+CH=38\)
\(\Rightarrow SABC=\frac{1}{2}BC\cdot AH=509,2\)
a: Xét ΔAHB vuông tại H có sin B=AH/AB
nên AB=5,96(cm)
=>BH=2,52(cm)
Xét ΔAHC vuông tại H có sin C=AH/AC
nên AC=7,05(cm)
=>HC=4,53(cm)
BC=2,52+4,53=7,05(cm)
C=7,05+7,05+5,96=20,06(cm)
b: góc A=180-58-40=82 độ
Xét ΔBHA vuông tại H có tan A=BH/HA
nên HA=0,56(cm)
Xét ΔBHC vuông tại H có tan C=BH/HC
nên HC=4,77(cm)
=>AC=5,33(cm)
\(S_{ABC}=\dfrac{5.33\cdot4}{2}=10.66\left(cm^2\right)\)
Lời giải:
Dễ tính $\widehat{A}=180^0-(\widehat{B}+\widehat{C})=70^0$
Theo công thức sin:
\(\frac{AB}{\sin A}=\frac{BC}{\sin B}=\frac{AC}{\sin C}\)
\(\Leftrightarrow \frac{AB}{\sin 70}=\frac{BC}{\sin 60}=\frac{35}{\sin 50}\)
\(\Rightarrow AB=\sin 70.\frac{35}{\sin 50}\approx 43\) (cm); \(BC=\sin 60.\frac{35}{\sin 50}\approx 40\) (cm)
Chu vi tam giác $ABC$ là:
$AB+BC+AC=43+40+35=118$ (cm)
Diện tích tam giác $ABC$ là: $\frac{1}{2}AB.AC\sin A=\frac{1}{2}.43.35.\sin 70\approx 707$ (cm vuông)
A B C H
Vẽ BH vuông góc với AC
Theo định lý Pythagore, ta có:
BC2=BH2+CH2=BH2+(AC-AH)2
=BH2+AH2+AC2-2AC.AH
Mà ta lại có:AH2+BH2=AB2 (định lý Pythagore, tam giác ABH vuông tại H)
và AH=1/2AB (do tam giác ABH là nửa tam giác đều)
Cho nên: BC2=AB2+AC2-2.1/2AB.AC=AB2+AC2-AB.AC (*)
Thay AB=28cm, AC=35cm vào (*), ta được:
BC2=1029=>BC=7\(\sqrt{21}\)cm
Vậy BC=7\(\sqrt{21}\)cm
\(\widehat{BAC}=60^0\Rightarrow\widehat{BOC}=120^0\)
\(BC=\sqrt{2R^2-2R^2.\cos120^0}=R\sqrt{3}=2\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.3.2\sqrt{3}=3\sqrt{3}\left(cm^2\right)\)
(K đăng hình đc nên hình tự vẽ)
Kẻ \(AH\perp BC\left(H\in BC\right)\)
• Xét \(\Delta HAC\) vuông tại \(H\) có
\(\sin C=\dfrac{AH}{AC}\Rightarrow AH=\sin50^o.35\approx26,81\left(cm\right)\)
\(\cos C=\dfrac{HC}{AC}\Rightarrow HC=\cos50^o.35\approx22,5\left(cm\right)\)
• Xét \(\Delta HAB\) vuông tại \(H\) có
\(\tan B=\dfrac{AH}{BH}\Rightarrow BH\approx\dfrac{26,81}{\tan60^o}\approx15,48\left(cm\right)\)
\(\cos B=\dfrac{AH}{AB}\Rightarrow AB\approx\dfrac{26,81}{\cos60^o}\approx53,62\left(cm\right)\)
*Khi đó chu vi \(\Delta ABC\) bằng \(AB+BC+AC\)
\(\approx53,62+\left(22,5+15,48\right)+35\)
\(\approx192,48\left(cm\right)\)
*Khi đó \(S_{\Delta ABC}=\dfrac{AH.BC}{2}\approx\dfrac{26,81.\left(22,5+15,48\right)}{2}\approx509,12\left(cm^2\right)\)
#F.C