K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2024

      B = \(\dfrac{2-3x}{x+1}\)  (đk \(x\) ≠ -1)

     Vì B \(\in\) P nên 

                 2 - 3\(x\) ⋮ \(x\) + 1

     - 3(\(x\) + 1) + 5 ⋮ \(x\) + 1

                        5  ⋮ \(x\) + 1

 \(x\) + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}

Lập bảng ta có:

\(x\) + 1 -5 -1 1 5
\(x\) -6 -2 0 4
B = \(\dfrac{2-3x}{x+1}\) -4 -8 2 -2
  loại loại   loại

Theo bảng trên ta có:  \(x\) = 0

Kết luận: Để B = \(\dfrac{2-3x}{x+1}\) là số nguyên tố thì \(x\) = 0

 

ĐKXĐ: x<>-1

Để B là số nguyên thì \(-3x+2⋮x+1\)

=>\(-3x-3+5⋮x+1\)

=>\(5⋮x+1\)

=>\(x+1\in\left\{1;-1;5;-5\right\}\)

=>\(x\in\left\{0;-2;4;-6\right\}\)

Thay x=0 vào B, ta được:

\(B=\dfrac{2-3\cdot0}{0+1}=\dfrac{2}{1}=2\) là số nguyên tố

=>Nhận

Thay x=-2 vào B, ta được:

\(B=\dfrac{2-3\cdot\left(-2\right)}{-2+1}=\dfrac{2+6}{-1}=-8\) không là số nguyên tố

=>Loại

THay x=4 vào B, ta được:

\(B=\dfrac{2-3\cdot4}{4+1}=\dfrac{-10}{5}=-2\) không là số nguyên tố

=>Loại

Thay x=-6 vào B, ta được:

\(B=\dfrac{2-3\cdot\left(-6\right)}{-6+1}=\dfrac{2+18}{-5}=\dfrac{20}{-5}=-4\) không là số nguyên tố

=>Loại

11 tháng 7 2016

a) 3x + 7x = x .(3 + 7) = x . 10

Với x thuộc N thì 3x + 7x luôn có ước là 10 => 3x + 7x chia hết cho 10 => 3x + 7x chia hết cho 2 và 5 => 3x + 7x có ít nhất 3 ước là 1; 2; 5, không là số nguyên tố

Vậy không tìm được giá trị x thỏa mãn

b) 7x - 4x = 3x

+ Với x = 0 => 7x - 3x = 0 - 0 = 0, không là số nguyên tố, loại

+ Với x = 1 => 7x - 4x = 7 - 4 = 3, là số nguyên tố, chọn

+ Với x > 1 thì 7x - 4x sẽ có ít nhất 3 ước là 1 ; x; 3, không là số nguyên tố, loại

Vậy x = 1

Ủng hộ mk nha ^_-

12 tháng 1 2021

Giúp mình với thứ sáu đi học rùi khocroi

14 tháng 11 2015

Câu 1 :

a)2 ; b)3

7 tháng 1 2018

2)

Tổng của 2 số là 2009

=> Trong 2 số phải có 1 số chẵn và 1 số lẻ

Mà số nguyên tố chẵn duy nhất là 2

=> 1 số là 2. Số còn lại là:

      2009 - 2 = 2007 không là số nguyên tố

=> Tổng của 2 số nguyên tố không thể bằng 2009.

7 tháng 1 2018

1) 

Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)

Với p = 3 => p + 2 = 3 + 2 = 5 là  SNT

                => p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)

Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)

Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3

=> p + 2 là hợp số (loại)

Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3

=> p + 4 là hợp số (loại)

Vậy p = 3

13 tháng 10 2023

a) Ta có: (3,5)=1 

+) Nếu 3x+5 chẵn

=> Loại

+) Nếu 3x+5 lẻ

=> x=2

b) +) x=2 (Loại)

+) x=3 (TM)

+) x>3 \(\Rightarrow\left[{}\begin{matrix}x=3k+1\\x=3k+2\end{matrix}\right.\)

-) x=3k+1 => x+8=3k+9 chia hết cho 3 (Loại)

-) x=3k+2 => x+10=3k+12 chia hết cho 3(Loại)

6 tháng 12 2023

B = (\(x\) + 2).(\(x^2\) - \(x\) + 1)

B là số nguyên tố khi và chỉ khi:

  \(\left\{{}\begin{matrix}x+2=1\\x^2-x+1\in P\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x^2-x+1=1\\x+2\in P\end{matrix}\right.\)

TH1:  \(\left\{{}\begin{matrix}x+2=1\\x^2-x+1\in p\end{matrix}\right.\)

         \(\left\{{}\begin{matrix}x=1-2\\x^2-x+1\in P\end{matrix}\right.\)

         \(\left\{{}\begin{matrix}x=-1\\x^2-x+1\in P\end{matrix}\right.\)

Thay \(x\) = -1 vào \(x^2\) - \(x\) + 1 ta có: (-1)2 - (-1) + 1 = 3 (nhận) (1)

TH2:  \(\left\{{}\begin{matrix}x^2-x+1=1\\x+2\in P\end{matrix}\right.\)

          \(x^2\) - \(x\) + 1  = 1

           \(x\).(\(x\) - 1) = 1  - 1

            \(x\).(\(x\) - 1) = 0

            \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Thay \(x\) = 0 vào \(x\) + 2 ta có: \(x+2\) = 0 + 2 = 2 (nhận) (2)

Thay \(x\) = 1 vào \(x\) + 2 ta có:  1 + 2 = 3 (nhận) (3)

Kết hợp (1); (2) và (3) ta có: 

\(x\) \(\in\) {-1; 0; 1}