K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019

B=1/2+(1/2)^2+................+(1/2)^100

=>1/2B=(1/2)^2+(1/2)^3+............+(1/2)^101

=>1/2B-B=(1/2^2+..............+1/2^101)-(1/2+..............+1/2^100)

=>1/2B-B=1/2^2+..............+1/2^101-1/2-..............-1/2^100

=>1/2B-B=1/2^101+(1/2^2-1/2^2)+................+(1/2^100-1/2^100)-1/2

=>1/2B-B=1/2^101+0+............+0-1/2

=>-1/2B=1/2^101-1/2

=>B=1/2^101-1/2

         __________

              -1/2

=>B<1

12 tháng 10 2016

giải câu 3

2 tháng 6 2015

a)ta có 3B=1+1/3+1/3^2+........+1/3^2003+1/3^2004

             B=    1/3+1/3^2+........+1/3^2003+1/3^2004+1/3^2005

suy ra 2B=1-1/3^2005

    suy ra B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)

suy ra B=1/2-1/3^2005/2 bé hơn 1/2

từ đấy suy ra B bé hơn 1/2

20 tháng 9 2017

C=\(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

3C=3.( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )

3C-C=( \(1+\frac{1}{3}+...+\frac{1}{3^{98}}\) ) - ( \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\) )

2C= 1 - \(\frac{1}{3^{99}}\)< 1

\(\Rightarrow\)C= \(\left(1-\frac{1}{3^{99}}\right)\div2\)<\(\frac{1}{2}\)

                                         Điều Phải Chứng Minh

17 tháng 9 2016

Ta có:

\(M=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(\Rightarrow3M-M=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)

\(\Rightarrow2M=1-\frac{1}{3^{98}}\)

\(\Rightarrow M=\left(1-\frac{1}{3^{98}}\right):2\)

\(\Rightarrow M=\frac{1}{2}-\frac{1}{3^{98}.2}< \frac{1}{2}\)

\(\Rightarrow M< \frac{1}{2}\left(đpcm\right)\)

17 tháng 9 2016

cảm ơn bạn nha