K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)

b: =(1-2x)(1+2x)

c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)

d: =(x+3)^3

e: \(=\left(2x-y\right)^3\)

f: =(x+2y)(x^2-2xy+4y^2)

Bài 4:

a) Ta có: \(x^3+6x^2+12x+8\)

\(=x^3+2x^2+4x^2+8x+4x+8\)

\(=x^2\left(x+2\right)+4x\left(x+2\right)+4\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2+4x+4\right)\)

\(=\left(x+2\right)^3\)

b) Ta có: \(x^3-3x^2+3x-1\)

\(=x^3-x^2-2x^2+2x+x-1\)

\(=x^2\left(x-1\right)-2x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-2x+1\right)\)

\(=\left(x-1\right)^3\)

c) Ta có: \(1-9x+27x^2-27x^3\)

\(=1-3x-6x+18x^2+9x^2-27x^3\)

\(=\left(1-3x\right)-6x\left(1-3x\right)+9x^2\left(1-3x\right)\)

\(=\left(1-3x\right)\left(1-6x+9x^2\right)\)

\(=\left(1-3x\right)^3\)

d) Ta có: \(x^3+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{8}\)

\(=x^3+3\cdot x^2\cdot\frac{1}{2}+3\cdot x\cdot\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3\)

\(=\left(x+\frac{1}{2}\right)^3\)

e) Ta có: \(27x^3-54x^2y+36xy^2-8y^3\)

\(=\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot2y+3\cdot3x\cdot\left(2y\right)^2-\left(2y\right)^3\)

\(=\left(3x-2y\right)^3\)

b: \(x^3+\dfrac{1}{27}=\left(x+\dfrac{1}{3}\right)\left(x^2-\dfrac{1}{3}x+\dfrac{1}{9}\right)\)

c: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

e: \(a^2y^2-2axby+b^2x^2\)

\(=\left(ay\right)^2-2\cdot ay\cdot bx+\left(bx\right)^2\)

\(=\left(ay-bx\right)^2\)

f: \(100-\left(3x-y\right)^2\)

\(=\left(10-3x+y\right)\left(10+3x-y\right)\)

g: \(64x^2-\left(8a+b\right)^2\)

\(=\left(8x\right)^2-\left(8a+b\right)^2\)

\(=\left(8x-8a-b\right)\left(8x+8a+b\right)\)

15 tháng 7 2015

mk ko hỉu cái đề của bn: Dạng 4,5: Lập phương của 1 tổng và lập phương của một hiệu ♥

Có phải bằng Dạng 4,5: Lập phương của 1 tổng và lập phương của một hiệu là yo

18 tháng 6 2016

a) = (x + 3)2 - y2 = (x + 3 - y)(x + 3 + y)

b) = x2(x - 3) -4(x - 3) = (x - 3)(x2 - 4) = (x - 3)(x - 2)(x + 2)

c) = 3x(x - y) - 5(x - y) = (x - y)(3x - y)

d) Nhầm đề. tui sửa lại x3 + y3 + 2x2 - 2xy + 2y2

= x3 + y3 + 2(x2 - xy + y2) = (x + y)(x2 - xy + y2) + 2(x2 - xy + y2) = (x2 - xy + y2)(x + y + 2)

e) = x4 - x3 - x3 + x2 - x2 + x + x - 1 = x3(x - 1) - x2(x - 1) - x(x - 1) + x - 1 = (x - 1)(x3 - x2 - x + 1) = (x - 1)(x - 1)(x2 - 1) = (x - 1)3(x + 1)

f) = x3 - 3x2 - x2 + 3x + 9x - 27 = x2(x - 3) - x(x - 3) + 9(x - 3) = (x-3)(x2 - x + 9)

g) chắc là 3xyz 

= x2y + xy2 + y2z + yz2 + x2z + xz2 + 3xyz = x2y + xy2 + xyz + y2z + yz2 + xyz + x2z + xz2 + xyz = (x + y + z)(xy + yz + xz)

h) = 23 -(3x)3 = (2 - 3x)(4 + 6x + 9x2)

i) = (x + y - x + y)(x + y + x - y) = 2y*2x = 4xy

k) = (x3 - y3)(x3 + y3) = (x - y)(x2 + xy +y2)(x + y)(x2 - xy +y2).

a) x2 - 7x + 5 = ( x2 - 2 . 7/2 . x + 49 / 4 ) + 5 - 49 / 4 
= (x - 7/2)^2 - 29/4
= (x - 7/2)^2 - (√ 29 / 2 )^2
= ( x - ( 7 + √ 29 / 2 )). ( x + ( 7 - √ 29 / 2 ))

17 tháng 11 2018

\(\left(x-1\right)^2-25\)

\(=x^2-2x+1-25\)

\(=x^2-2x-24\)

\(=x^2-6x+4x-24\)

\(=x.\left(x-6\right)+4.\left(x-6\right)\)

\(=\left(x+4\right).\left(x-6\right)\)

17 tháng 11 2018

a, \(1-2y+y^2=\left(y+1\right)^2=\left(y+1\right)\left(y+1\right)\)

b, \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2=\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)

c, \(1-4x^2=1^2-\left(2x\right)^2=\left(1-2x\right)\left(1+2x\right)\)

d,  \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right)\left(4+6x+9x^2\right)\)

25 tháng 9 2017

Ta có : x3 - 7x + 6 

= x3 - x - 6x + 6 

= x(x2 - 1) - 6(x - 1)

= x(x + 1)(x - 1) - 6(x - 1)

= (x - 1) [x(x + 1) - 6]

= (x - 1) (x2 + x - 6) . 

CÁC Ý SAU TƯƠNG TỰ

19 tháng 2 2018

   x3 - 7x + 6 

= x3 - x - 6x + 6 

= x(x2 - 1) - 6(x - 1)

= x(x + 1)(x - 1) - 6(x - 1)

= (x - 1) [x(x + 1) - 6]

= (x - 1) (x2 + x - 6) . 

25 tháng 9 2017

1

x3-7x+6

=x3+0x2-7x +6

= x3-x2+x2-x-6x+6

=(x3-x2)+(x2-x)-(6x-6)

=x2(x-1)+x(x-1)-6(x-1)

=(x-1)(x2+x-6)

=(x-1)(x2+3x-2x-6)

=(x-1)[x(x+3)-2(x+3)]

=(x-1)(x-2)(x+3)

25 tháng 9 2017

7) (x+2)(x+3)(x+4)(x+5)-24

=(x+2)(x+5) (x+3)(x+4)-24

=[x(x+5)+2(x+5)][x(x+4)+3(x+4)]-24

=[x2+5x+2x+10][x2+4x+3x+12]-24

=[x2+7x+10][x2+7x+12]-24

đặt a=x2+7x+10

=>x2+7x+12=a+2

=a(a+2)-24

=a2+2a-24

=a2+6a-4a-24

=(a2+6a)-(4a+24)

=a(a+6)-4(a+6)

=(a+6)(a-4)

thay a= x2+7x+10 vào ta được

(x2+7x+10+6)(x2+7x+10-4)

=(x2+7x+16)(x2+7x+6)