Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt tích 2 số tự nhiên liên tiếp là \(a\left(a+1\right)=a^2+a\)
Ta sẽ xét xem tích 2 số tự nhiên liên tiếp chia cho 3 dư bao nhiêu.
TH1: a chia hết cho 3
\(\Rightarrow\)a2 chia hết cho 3 và a cũng chia hết cho 3
\(\Rightarrow a^2+a\) chia hết cho 3
\(\Rightarrow a\left(a+1\right)\) chia hết cho 3
TH2: a chia 3 dư 1 -> a có dạng 3k+1
\(\Rightarrow a^2=\left(3k+1\right)^2=\left(3k+1\right)\left(3k+1\right)=\left(3k+1\right)3k+\left(3k+1\right).1=9k^2+3k+3k+1\)\(=3.\left(3k^2+k+k\right)+1\)
\(\Rightarrow a^2+a=3.\left(3k^2+k+k\right)+1+3k+1=3.\left(3k^2+k+k+k\right)+1+1=3.\left(3k^2+3k\right)+2\)
Thấy \(3.\left(3k^2+3k\right)+2\) chia 3 dư 2
\(\Rightarrow a^2+a\) chia 3 dư 2
\(\Rightarrow a\left(a+1\right)\) chia 3 dư 2
TH3: a chia 3 dư 2
\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k+2\right)\left(3k+2\right)=\left(3k+2\right).3k+\left(3k+2\right).2=9k^2+6k+6k+4\) \(=3.\left(3k^2+2k+2k\right)+4\)
\(\Rightarrow a^2+a=3.\left(3k^2+2k+2k\right)+4+3k+2=3.\left(3k^2+2k+2k+k\right)+6\)
\(=3.\left(3k^2+5k\right)+3.2=3.\left(3k^2+5k+2\right)\) chia hết cho 3
Như vậy tích 2 số tự nhiên liên tiếp luôn chia hết cho 3 hoặc chia 3 dư 2.
Mà \(\left(-3\right)^{20}+1=3^{20}+1\) chia 3 dư 1
Vậy \(\left(-3\right)^{20}+1\) không phải tích 2 số tự nhiên liên tiếp.
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Cho tam giác ABC đều
D thuộc AB , E thuộc AC sao cho BD = AE
CM : Khi D,E thay đổi ( di chuyển ) trên AB,AC thì đường trung tuyến DE luôn đi qua điểm cố định
Help me !!!
Câu 1 : Việc gõ ký hiệu như bạn đề cập ; mình cũng không biết phải làm sao nên cứ dùng xyz vậy thôi.
Ta có:
xyz = 100x +10y +z = 111x -11x +10y +z = 37.3x -(11x-10y-z) chia hết cho 37
=> (11x-10y-z) chia hết cho 37
Lại có:
xyz -yzx = 100x +10y +z -100y -10z -x = 99x -90y -9z = 9.(11x-10y-z) chia hết cho 37
Vậy yzx cũng phải chia hết cho 37
Có thể phát biểu hay hơn là CMR: Khi hoán vị các chữ số của 1 số có 3 chữ số chia hết cho 37 thì được số mới cũng chia hết cho 37.
Đáp án D
Ta có lim x → 2 − f x = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − − 2 x − 3 = − 1
Và lim x → 2 − f x = lim x → 2 − a + 1 − x 2 + x = a − 1 4 ; f 2 = a − 1 4 .
Theo bài ra, ta có lim x → 2 + f x = lim x → 2 − f x = f 2 ⇒ a = − 3 4
Do đó, bất phương trình − x 2 + a x + 7 4 > 0 ⇔ − x 2 − 3 4 x + 7 4 > 0 ⇔ − 7 4 < x < 1.
tìm số nguyên x để A có giá trị là 1 số nguyên \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0\right)\)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\) E Z
<=>4 chia hết cho \(\sqrt{x}-3\)
<=>\(\sqrt{x}-3\) E Ư(4)={-4;-2;-1;1;2;4}
+)\(\sqrt{x}-3=-4=>\sqrt{x}=-1\) (loại vì \(\sqrt{x}\) >= 0)
+)\(\sqrt{x}-3=-2=>\sqrt{x}=1=>x=1\)
+)\(\sqrt{x}-3=-1=>\sqrt{x}=2=>x=4\)
+)\(\sqrt{x}-3=1=>\sqrt{x}=4=>x=16\)
+)\(\sqrt{x}-3=2=>\sqrt{x}=5=>x=25\)
+)\(\sqrt{x}-3=4=>\sqrt{x}=7=>x=49\)
Vậy x E {1;4;16;25;49} thì thỏa mãn đề bài
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)=\(\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)=1+\(\frac{4}{\sqrt{x}-3}\)
Để A \(\in\) Z\(\Leftrightarrow\)\(\frac{4}{\sqrt{x}-3}\)\(\in\) Z
\(\Leftrightarrow\)\(\sqrt{x}-3\) \(\in\) ư(4)=4;-4;1;-1;2;-
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
\(x\) | 16 | 4 | 25 | 1 | 49 | loại |
Vậy x\(\in\)\(\left\{1;4;16;25;49\right\}\)thì A\(\in\)Z
Bài làm:
A) Để biểu thức B là phân số <=> x+5 khác 0 và x khác -5. Vậy với x+5 khác -5 thì biểu thức B là phân số.
B) Để biểu thức B là số nguyên <=>x+5 khác 0
Ta có: x-2=[(x+5)-7] chia hết cho x+5
=> 7 chia hết cho x + 5 hoặc x+5 thuộc Ư(7)={ -7; -1; 1; 7 }
Ta có bảng:
x +5 | -7 | -1 | 1 | 7 |
x | -12 | -6 | -4 | 2 |
Vậy với x thuộc cá gia trị như -2; -6; -4; 2
C) Với x khác -5 thì B=\(\frac{1}{2}\) <=>\(\frac{x-2}{x+5}\)=\(\frac{1}{2}\)
Suy ra: 2(x-2)=1(x+5)
2x-4 = x+5
2x-x = 5+4
x = 9
Vậy x=9 thì B=\(\frac{1}{2}\)
a,Để B là phân số thì x \(\in\) Z,x khác 5
b,Để B số nguyên thì x -2 chi hết cho x-5
\(\Leftrightarrow\) (x-5)+3 chia hết cho x-5
mà x-5 chia hết cho x-5 \(\Rightarrow\) 3 chia hết cho x-5\(\Rightarrow\) x-5 \(\in\)Ư(3)={-3;-1;1;3}
Sau đó thay các giá trị đó vào x ở biểu thức x-5 mà giải
c,Theo bài ra ,ta có:\(\frac{x-2}{x-5}\)=\(\frac{1}{2}\)
\(\Leftrightarrow\) 2(x-2)=1(x-5)
2x-4=x-5
2x-x=-5+4
x=-1
Vậy x=-1 thì B=\(\frac{1}{2}\)
a: =>1+2+...+x=120
=>x(x+1)/2=120
=>x(x+1)=240
=>\(x^2+x-240=0\)
\(\Delta=1^2-4\cdot1\cdot\left(-240\right)=961>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-31}{2}=\dfrac{-32}{2}=-16\left(loại\right)\\x_2=\dfrac{-1+31}{2}=15\left(nhận\right)\end{matrix}\right.\)