Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc=bc x 5
a x 100 +bc=bc x 5
a x 100 =bc x4
a x 25=bc
suy ra a=1;bc=25
số đó là125
Giải:
Gọi số phải tìm là abcd. Xoá đi chữ số hàng chục và hàng đơn vị ta được số ab.
Theo đề bài ta có
abcd – ab = 4455
100 x ab + cd – ab = 4455
cd + 100 x ab – ab = 4455
cd + 99 x ab = 4455
cd = 99 x (45 – ab)
Ta nhận xét tích của 99 với 1 số tự nhiên là 1 số tự nhiên nhỏ hơn 100. Cho nên 45 – ab phải bằng 0 hoặc 1.
- Nếu 45 – ab = 0 thì ab = 45 và cd = 0.
- Nếu 45 – ab = 1 thì ab = 44 và cd = 99.
Số phải tìm là 4500 hoặc 4499.
Cách 1:
Gọi số phải tìm là ab. Theo bài ra ta có
ab = 5 x (a + b)
10 x a + b = 5 x a + 5 x b
10 x a – 5 x a = 5 x b – b
(10 – 5) x a = (5 – 1) x b
5 x a = 4 x b
Từ đây suy ra b chia hết cho 5. Vậy b bằng 0 hoặc 5.
+ Nếu b = 0 thì a = 0 (loại)
+ Nếu b = 5 thì 5 x a = 20, vậy a = 4.
Số phải tìm là 45.
Cách 2:
Theo bài ra ta có
ab = 5 x ( a + b)
Vì 5 x (a + b) có tận cùng bằng 0 hoăc 5 nên b bằng 0 hoặc 5.
+ Nếu b = 0 thay vào ta có:
a5 = 5 x (a + 5)
10 x a + 5 = 5 x a + 25
Tính ra ta được a = 4.
Thử lại: 45: (4 + 5) = 5 . Vậy số phải tìm là 45.
Gọi số có ba chữ số là abc, xóa chữ số hàng trăm thì được số bc.
=> abc = 7 x bc
100 a + 10b + c = 7 x (10b + c)
100a + 10 b + c = 70 b + 7 c
100 a = 60b + 6 c (Trừ cả hai vế của dòng trên đi 10b và c)
50 a = 30b + 3c (chia cả hai vế của dòng trên cho 2)
50 a = 3 (10b +c) (*)
=> 50 a phải chia hết cho 3 => a chia hết cho 3 (vì số 50 không chia hết cho 3 nên thừa số a phải chia hết cho 3 để tích 50 a chia hết cho 3)
=> a = 0 hoặc 3 hoặc 6 hoặc 9
Trường hơp thứ 1: a =0 (loại vì số abc trở thành số hai chữ số)
Trường hợp thứ 2: a = 3, thay vào (*) => 50 x 3 = 3 (10b +c)
=> 10b + c = 50 => b và c là thương và dư của phép chia 50 chia cho 10.
Ta có 50 chia 10 được 5 dư 0 => b = 5, c = 0
=> Số cần tìm là 350
Trường hợp thứ 3: a = 6, thay vào (*) => 50 x 6 =3 (10b +c)
=> 10b + c = 100
Vì b ≤ 9, c ≤ 9 => 10b + c ≤ 10.9 + 9 =99 <100
=> Không có chữ số b và c nào thỏa mãn 10b + c = 100
Trường hợp thứ 4: a =9, cũng lý luận như trường hợp a = 6 ở trên
Vậy: Số tìm được là 350
Số cần tìm là: 350 bài này dài lắm bạn có thể vào câu hỏi tương tự có thì :L_I_K_E
Số tự nhiên có ba chữ số, mà chữ số hàng trăm bằng chữ số hàng đơn vị sẽ có dạng \(\overline{aba}\)
Nếu xoá chữ số hàng trăm thì số đó có dạng là \(\overline{ba}\)
\(\overline{aba}:21=\overline{ba}\)
\(\overline{ba}\times21=\overline{aba}\)
\(\overline{ba}\times21=a\times100+\overline{ba}\)
\(\overline{ba}\times21-\overline{ba}=a\times100\)
\(\overline{ba}\times20=a\times100\)
\(\overline{ba}\) = a \(\times100\) :20
\(\overline{ba}\) = a \(\times\) 5
⇒ \(\overline{ba}\) ⋮ 5 ⇒ \(a\) = 0; 5 ( a = 0 loại)
⇒ \(\overline{b5}\) = 5 \(\times\) 5 = 25 ⇒ \(b\)= 2
vậy \(\overline{aba}\) = 525
Gọi số có 3 chữ số cần tìm là abc (đk : a;b;c là số tự nhiên)
Theo bài ra ta có : abc : bc = 3
=> (a x 100 + bc) : bc = 3 (1)
=> a x 100 : bc + 1 = 3
=> a x 100 : bc = 2
=> \(\frac{a}{bc}\times100=2\Rightarrow\frac{a}{bc}=\frac{1}{50}\Rightarrow a=\frac{bc}{50}\)
Vậy khi bc = 50 x a thì có số abc thỏa mãn bài toán
mà \(10\le bc\le99\)(2)
Kết hợp với điều kiện a là số tự nhiên => bc chia hết 50 để thỏa mãn đk (3)
Từ (1) và (2) => bc = 50 (4)
Thay (1) vào (4) có : a50 : 50 = 3
<=> (a x 100 + 50) : 50 = 3
=> a x 100 + 50 = 150
=> a x 100 = 100
=> a = 1 (5)
Kết hợp (4) và (5) => abc = 150
Vậy số cần tìm là 150
Gọi số cần tìm là abc
Theo đề bài ta có:abc=bc × 3
100a+bc=3×bc
100a=2×bc
50a=1bc
Nên:a=1
b=50
k cho nhé
Lời giải:
Gọi số cần tìm là $\overline{ab1}$ với $a,b$ là số tự nhiên có 1 chữ số. $a>0$.
Theo bài ra ta có:
$\overline{ab}=3\times \overline{b1}$
$10\times a+b=3\times (b\times 10+1)=30\times b+3$
$30\times b-10\times a=b-3$
Vì $30\times b-10\times a$ có tận cùng bằng $0$ nên $b-3$ có tận cùng bằng $0$,
$\Rightarrow b$ có tận cùng là $3$.
$\Rightarrow b=3$.
Vậy: $30\times 3-10\times a=0$
$90-10\times a=0$
$a=90:10=9$
Vậy số cần tìm là $931$
Gọi số có ba chữ số là abc, xóa chữ số hàng trăm thì được số bc
=> abc = 7 x bc
100 a + 10b + c = 7 x (10b + c)
100a + 10 b + c = 70 b + 7 c
100 a = 60b + 6 c (Trừ cả hai vế của dòng trên đi 10b và c)
50 a = 30b + 3c (chia cả hai vế của dòng trên cho 2)
50 a = 3 (10b +c) (*)
=> 50 a phải chia hết cho 3 => a chia hết cho 3 (vì số 50 không chia hết cho 3 nên thừa số a phải chia hết cho 3 để tích 50 a chia hết cho 3)
=> a = 0 hoặc 3 hoặc 6 hoặc 9
Trường hơp 1: a =0 (loại vì số abc trở thành số hai chữ số)
Trường hợp 2: a = 3, thay vào (*) => 50 x 3 = 3 (10b +c)
=> 10b + c = 50 => b và c là thương và dư của phép chia 50 chia cho 10.
Ta có 50 chia 10 được 5 dư 0 => b = 5, c = 0
=> Số cần tìm là 350
Trường hợp 3: a = 6, thay vào (*) => 50 x 6 =3 (10b +c)
=> 10b + c = 100
Vì b ≤ 9, c ≤ 9 => 10b + c ≤ 10.9 + 9 =99 <100
=> Không có chữ số b và c nào thỏa mãn 10b + c = 100
Trường hợp 4: a =9, cũng lý luận như trường hợp a = 6 ở trên
Kết luận: Số tìm được là 350
duyệt đi
a)gọi số cần tìm là abc.theo bài ra ta có:
abc=bc.7
=>100a=7bc-bc
=>100a=6bc
=>50a=3bc
50a chia hết cho 50 =>3bc chia hết cho 50
(3;50)=1 =>bc chia hết cho 50
=>bc=50
=>abc=50.7=350
vậy số cần tìm là 350
b)Gọi số cần tìm là ab.
Theo bài ra ta có: ab = 9.b
=> 10a + b = 9xb
=> 10a = 8b
=> 5a = 4b
<=>a/b = 4/5
=> a=4 ; b=5.
Vậy số cần tìm là 45.