Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=3-3^2+3^3-3^4+3^5-3^6+...-3^{22}+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+...-\left(3^{22}-3^{23}+3^{24}\right)\)
\(=3\left(1-3+3^2\right)-3^4\left(1-3+3^2\right)+...-3^{22}\left(1-3+3^2\right)\)
\(=7\left(3-3^4+...-3^{22}\right)⋮7\)
\(C=3-3^2+3^3-3^4+3^5-3^6+...-3^{22}+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3-3^4\right)+\left(3^5-3^6+3^7-3^8\right)+...+\left(3^{21}-3^{22}+3^{23}-3^{24}\right)\)
\(=3\left(1-3+3^2-3^3\right)+3^5\left(1-3+3^2-3^3\right)+...+3^{21}\left(1-3+3^2-3^3\right)\)
\(=-20\cdot\left(3+3^5+...+3^{21}\right)\)
\(=-60\cdot\left(1+3^4+...+3^{20}\right)⋮60\)
\(C⋮60;C⋮7\)
mà ƯCLN(60;7)=1
nên C chia hết cho 60*7=420
Bài này làm từng câu thôi :
\(A=1+3^1+3^2+.......+3^{2014}+3^{2015}\)
\(\Rightarrow3A=3+3^2+3^3+......+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3+3^2+......+3^{2016}\right)-\left(1+3^1+.....+3^{2015}\right)\)
\(\Rightarrow2A=3^{2016}-1\)
\(\Rightarrow A=\frac{3^{2016}-1}{2}\)
\(A=|x+1|+5\ge5\forall x\)
=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)
\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có: \(x^2+3\ge3\forall x\)
Min x2 + 3 = 3 tại x = 0
Khi đó: Max B = 1+ 12/3 = 5 tại x = 0
=.= hk tốt!!
|x+1 lớn hơn hoặc bằng 0
=> |x+1|+5 lớn hơn hoặc bằng 5
Dấu = xảy ra khi x+1=0 <=> x=-1
Vậy Min A = 5 khi x=-1
\(A=1+3^2+3^4+...+3^{100}\)
\(9A=3^2+3^4+3^6+...+3^{102}\)
\(8A=3^{102}-1\)
\(\Rightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Vì \(3^{102}-27⋮3\)(1)
\(3^{102}-27⋮2\)(\(3^{102}-27\)là số chẵn ) (2)
\(3^{102}-27=9\left(3^{100}-3\right)\)\(\Rightarrow3^{102}-27⋮9\)(3)
Từ (1) , (2), (3) \(\Rightarrow8A-26⋮54\)\(\left(\left(2,3,9\right)=1\right)\)
vậy ...
\(A=1+3^2+3^4+...+3^{100}\)
\(\Leftrightarrow3^2A=3^2\left(1+3^2+3^4+....+3^{100}\right)\)
\(\Leftrightarrow9A=3^2+3^4+3^6+...+3^{102}\)
\(\Leftrightarrow9A-A=\left(3^2+3^4+3^6+....+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(\Leftrightarrow8A=3^{102}-1\)
\(\Leftrightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Ta có: \(3^{102}⋮3;27⋮3\Rightarrow3^{102}-27⋮3\left(1\right)\)
\(3^{102}-27⋮2\left(2\right)\)(3^102 -27 là số lẻ)
\(3^{102}-27=\left(3^2\right)^{51}-27=9^{51}-27⋮9\left(3\right)\)
(1)(2)(3) => 8A-26 chia hết cho 54 (đpcm)
Lời giải:
a. Biểu thức $B$ không có GTLN bạn nhé. Chỉ có GTNN thôi.
b.
$C=(3-3^2+3^3-3^4)+(3^5-3^6+3^7-3^8)+....+(3^{21}-3^{22}+3^{23}-3^{24})$
$=(3-3^2+3^3-3^4)+3^4(3-3^2+3^3-3^4)+....+3^{20}(3-3^2+3^3-3^4)$
$=(3-3^2+3^3-3^4)(1+3^4+...+3^{20})=-60(1+3^4+...+3^{20})\vdots 60(*)$
Mặt khác:
$C=(3-3^2+3^3)-(3^4-3^5+3^6)+.....-(3^{22}-3^{23}+3^{24})$
$=3(1-3+3^2)-3^4(1-3+3^2)+...-3^{22}(1-3+3^2)$
$=(1-3+3^2)(3-3^4+...-3^{22})=7(3-3^4+...-3^{22})\vdots 7(**)$
Từ $(*); (**)$ mà $(7,60)=1$ nên $C\vdots (7.60)$ hay $C\vdots 420$
cảm ơn bạn nhé^^