Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt \(E_n=n^3+3n^2+5n\)
- Với n=1 thì E1=9 chia hết 3
- Giả sử En đúng với \(n=k\ge1\) nghĩa là:
\(E_k=k^3+3k^2+5k\) chia hết 3 (giả thiết quy nạp)
- Ta phải chứng minh Ek+1 chia hết 3,tức là:
Ek+1=(k+1)3+3(k+1)2+5(k+1) chia hết 3
Thật vậy:
Ek+1=(k+1)3+3(k+1)2+5(k+1)
=k3+3k2+5k+3k2+9k+9=Ek+3(k2+3k+3)
Theo giả thiết quy nạp thì Ek chia hết 3
ngoài ra 3(k2+3k+3) chia hết 3 nên Ek chia hết 3
=>Ek chia hết 3 với mọi \(n\in N\)*
Đề A đạt giá trị nguyên
=> 3n + 9 chia hết cho n - 4
3n - 12 + 12 + 9 chia hết cho n - 4
3.(n - 4) + 2c1 chia hết cho n - 4
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Thay n - 4 vào các giá trị trên như
n - 4 = 1
n - 4 = -1
.......
Ta tìm được các giá trị :
n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}
a) Để A thuộc Z (A nguyên)
=> 3n+9 chia hết cho n-4
hay 3n+9-12+12 chia hết cho n-4 (-12+12=0)
3n-12+9+12 chia hết cho n-4
3n-12+21 chia hết cho n-4
3(n-4)+21 chia hết cho n-4
Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4
mà Ư(21)={21;1;7;3} nên ta có bảng:
n-4 | 21 | 1 | 3 | 7 |
n | 25 (tm) | 5 (tm) | 7 (tm) | 11 (tm) |
Vậy n={25;5;7;11} thì A nguyên.
b)
Để B thuộc Z (B nguyên)
=> 6n+5 chia hết cho 2n-1
hay 6n+5-3+3 chia hết cho 2n-1 (-3+3=0)
6n-3+5+3 chia hết cho 2n-1
6n-3+8 chia hết cho 2n-1
3(2n-1)+8 chia hết cho 2n-1
Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1
mà Ư(8)={8;1;2;4} nên ta có bảng:
2n-1 | 8 | 1 | 2 | 4 |
n | 4.5 (ktm) | 1 (tm) | 1.5 (ktm) | 2.5 (ktm) |
Vậy, n=1 thì B nguyên.
\(A=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)
=> n-4 là USC(21) => n-4={-21; -7; -3; -1; 1; 3; 7; 21} Từ đó suy ra n
Bài B cũng tương tự
a) A = \(\frac{3n+9}{n-4}\)= \(\frac{3\left(n-4\right)+21}{n-4}\)= 3 + \(\frac{21}{n-4}\)
Để A là số nguyên , n-4 phải là ước của 21. Ta được :
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 7 | 11 | 25 |
A | 2 | 0 | -4 | -18 | 24 | 10 | 6 | 4 |
b) Biến đổi : B = 3 + \(\frac{8}{2n-1}\)
2n-1 là ước lẻ của 8 .
Đáp số :
n | 1 | 0 |
B | 11 | -5 |
Ta có :
A = 3n + 9/n - 4
A = 3n - 12 + 21/n - 4
A = 3 x ( n - 4 )/n - 4 + 21/n - 4
A = 3 x ( n- 4 )/n - 4 + 21/n - 4
A = 3 + 21/n -4
Để A nguyên thì 21/n - 4 nguyên
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư ( 21 )
=> n - 4 thuộc ( 1 ; -1 ; -3 ; -7 ; 21 ; -21 )
=> n thuộc ( 5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 15 ; -17 )
K nha mọi người !!
Ta có:
A = 3n + 9/n - 4
A = 3n - 12 + 21/n - 4
A = 3.(n - 4) + 21/n - 4
A = 3.(n - 4)/n - 4 + 21/n - 4
A = 3 + 21/n - 4
Để A nguyên thì 21/n - 4 nguyên
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21)
=> n - 4 thuộc {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
=> n thuộc {5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 25 ; -17}
Phần (2) bạn làm sai rồi ❌:
Theo mk thì là thế này:
Để a nguyên thì 3n+9 chia hết cho n-4
=>3(n-4)+12+9 chia hết cho n-4
=>3(n-4)+21 chia hết cho n-4
=>21chia hết cho n-4 (vì 3(n-4) chi
=>21 chia hết cho n-4(vì 3(n-4) chia hết cho n-4)
=>n-4 € Ư(21)
=> n-4 € {1;3;7;21;-1;-3;-7;-21}
=>n € {5;7;11;25;3;1;-3;-25}
Bạn tự thử lại xem thế nào nha😉
Bài làm của bạn cũng ra kết quả đúng nhưng mk ko biết cách làm của bạn 😇
Tại hồi nãy mk nhấn nhầm xin lỗi nha😓