K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2016

A = ( a+1)(b+1)

= ab + a + b + 1

= 1 + 1 + 1 + 1

= 4  

vì ab = 1 nên a\(\ge\)1

b\(\ge\)1

dấu bằng xảy ra khi a=b=1

26 tháng 12 2016

ta có 

A = ( a+1)(b+1)

= ab + a + b + 1

= 1 + 1 + 1 + 1

= 4 

giải thích 

vì ab = 1 nên a>=1

b>=1

dấu bằng xảy ra khi a=b=1

16 tháng 9 2017

a) (x+2)(x-3) <0 \(\Leftrightarrow\)x+2>0 , x-3 <0 hoặc x+2<0 , x-3 >0 ( loại)

\(\Leftrightarrow\)-2<x<3

b) \(\left(x-1\right)\left(x-2\right)\ge0\)

\(\Leftrightarrow\)x-1\(\ge\)0 , x-2 \(\ge\)0 hoặc x-1 \(\le0\), x-2 \(\le0\)

\(\Leftrightarrow\)\(1\le x\)hoặc \(x\ge2\)

c) ta có \(x^2+1>0\)\(\Rightarrow\)x+2 >0 \(\Leftrightarrow\)x>-2

13 tháng 9 2017

  Cho a, b > 0. CMR: 1/a + 1/b ≥ 4/(a + b) (✽) 

Cách 1: Biến đổi tương đương 
(✽) ⇔ (a + b)/ab ≥ 4/(a + b) , do a,b > 0 --> ab > 0 và a + b > 0, quy đồng 2 vế 
⇔ (a + b)² ≥ 4ab 
⇔ a² + 2ab + b² ≥ 4ab 
⇔ a² - 2ab + b² ≥ 0 
⇔ (a - b)² ≥ 0 luôn đúng ∀ a,b > 0 
--> đpcm 
Dấu " = " xảy ra ⇔ a = b 

P/s: Em ko chắc đâu nhé 

13 tháng 9 2017

\(\Rightarrow a,b\ge1\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=\frac{a}{a}+\frac{a}{b}+\frac{b}{b}+\frac{b}{a}\)

\(=1+\frac{a}{b}+1+\frac{b}{a}\)

\(=2+\frac{a}{b}+\frac{b}{a}\)

\(=2+\frac{a.a}{b.a}+\frac{b.b}{b.a}\)

\(=2+\frac{a^2+b^2}{b.a}\)

\(=\frac{2.a.b}{a.b}+\frac{a^2+b^2}{b.a}\)

\(=\frac{2.a.b+a^2+b^2}{a.b}\)

\(=2+a^2+b^2\)


Nếu :\(a=1;b=1\)

\(\Rightarrow2+a^2+b^2\ge4\left(đpcm\right)\)

10 tháng 2 2017

Nhiều chuyện!

14 tháng 7 2017

co  a<b+c<a+1    =>   a-c<b+c-c<a+1-c    => a-c<b<a+1-c

ma a >1  b<c  suy ra   a phai lon hon c 

ma c>b  suy ra a>b

23 tháng 2 2016

a,

vì (a-b)2>=0(luon dung)

=>a2-2ab+b2>=0

=>a2+b2>=2ab

a: (x+2)(x-3)<0

=>x+2>0 và x-3<0

=>-2<x<3

b: (x-1)(x-2)>=0

=>x-2>=0 hoặc x-1<=0

=>x>=2 hoặc x<=1

c: Ta có: \(\left(x^2+1\right)\left(x+2\right)>0\)

=>x+2>0

=>x>-2