Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9: \(=1-\dfrac{1}{99}+1-\dfrac{1}{100}+\dfrac{100}{101}\cdot\dfrac{1-4+3}{12}=2-\dfrac{199}{9900}=\dfrac{19601}{9900}\)
10: \(=\left(\dfrac{78}{79}+\dfrac{79}{80}+\dfrac{80}{81}\right)\cdot\dfrac{6+5+9-20}{30}=0\)
1 )Ta có
\(M=\left(\dfrac{1}{2^2}-1\right)\cdot\left(\dfrac{1}{3^2}-1\right)\cdot\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)
\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right).....\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)
\(=\dfrac{-1}{2}\cdot\dfrac{3}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{4}{3}\cdot\dfrac{-3}{4}\cdot\dfrac{5}{4}\cdot\cdot\cdot\cdot\dfrac{-99}{100}\cdot\dfrac{101}{100}\)
\(=\dfrac{-1\cdot\left(-2\right)\cdot\left(-3\right)\cdot3\cdot\left(-4\right)\cdot4\cdot\left(-5\right)\cdot5....\cdot\left(-100\right)\cdot100\cdot101}{2^2\cdot3^2\cdot4^2....\cdot100^2}\)
\(=-\dfrac{101}{200}< \dfrac{1}{2}\)
2 ) Số phân số của biểu thức B là 180 phân số
Ta có
\(\dfrac{1}{20}>\dfrac{1}{200};\dfrac{1}{21}>\dfrac{1}{200};\dfrac{1}{22}>\dfrac{1}{200};....;\dfrac{1}{199}>\dfrac{1}{200}\)
\(\Rightarrow B=\dfrac{1}{20}+\dfrac{1}{21}+...+\dfrac{1}{200}>\dfrac{1}{200}\cdot180=\dfrac{9}{10}\)
Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)
\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)
\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)
\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)
Vậy \(A=\dfrac{-5}{12}.\)
\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)
\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)
\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)
\(C=2-\dfrac{1}{2^{2016}}\)
\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+.......+\left(\dfrac{1}{2}\right)^{10}\)
\(\Leftrightarrow A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+.......+\dfrac{1}{2^{10}}\)
\(\Leftrightarrow2A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^9}\)
\(\Leftrightarrow2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{2^{10}}\)
b) \(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
\(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{499}{1000}\)
\(A=\left(-\dfrac{43}{51}\right)\left(-\dfrac{19}{80}\right)\)
=>A>0(1)
\(B=\left(-\dfrac{7}{13}\right)\left(-\dfrac{4}{65}\right)\left(-\dfrac{8}{21}\right)\)
=>B<0(2)
C\(=-\dfrac{5}{10}.\left(-\dfrac{4}{10}\right).....\left(\dfrac{4}{10}\right)\left(\dfrac{5}{10}\right)=0\)
=>C=0(3)
Từ 1;2;3 =>A>C>B
\(A=\dfrac{-43}{51}.\dfrac{-19}{80}\Leftrightarrow A>0\left(1\right)\)
\(B=\left(\dfrac{-7}{13}\right).\left(-\dfrac{4}{65}\right).\left(\dfrac{-8}{31}\right)\Leftrightarrow B< 0\left(2\right)\)
\(C=\dfrac{-5}{10}.\dfrac{-4}{10}...........\dfrac{3}{10}.\dfrac{4}{10}.\dfrac{5}{10}\Leftrightarrow C=0\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow A>C>B\)
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
ngay bây giờ ta cần nhân giống mấy đứa có lời giải "BÁ" này kẻo nó tuyệt chủng hết
Dễ mà??
Ta có: \(\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{10}\)
=> \(\dfrac{y+z}{yz}=\dfrac{3}{10}\)
=> \(10y+10z=3yz\)
=> \(30y+30z=9yz\)
=> \(9yz-30y-30z=0\)
=> \(9yz-30y-30z+100=100\)
=> \(3y\left(3z-10\right)-10\left(3z-10\right)=100\)
=> \(\left(3y-10\right)\left(3z-10\right)=100\)