Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)
\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)
\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)
\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)
Vậy \(A=\dfrac{-5}{12}.\)
\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)
\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)
\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)
\(C=2-\dfrac{1}{2^{2016}}\)
K chép lại đề, lm luôn nhé:
*\(\Rightarrow\) \(\left(\dfrac{7}{2}+2x\right)\cdot\dfrac{8}{3}=\dfrac{16}{3}\)
\(\Rightarrow\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)
\(\Rightarrow2x=2-\dfrac{7}{2}=-\dfrac{3}{2}\)
\(\Rightarrow x=-\dfrac{3}{4}\)
* \(\Rightarrow\left|2x-\dfrac{2}{3}\right|=\dfrac{\dfrac{3}{4}-2}{2}=-\dfrac{5}{8}\)
=> K có gt x nào t/m đề
* Đề sai
* \(\Rightarrow\left[{}\begin{matrix}3x-1=0\\-\dfrac{1}{2}x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=10\end{matrix}\right.\)
*\(\Rightarrow\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=-\dfrac{21}{4}\)
\(\Rightarrow2x-1=\dfrac{1}{3}:\left(-\dfrac{21}{4}\right)=-\dfrac{4}{63}\)
\(\Rightarrow2x=-\dfrac{4}{63}+1=\dfrac{59}{63}\)
\(\Rightarrow x=\dfrac{59}{63}:2=\dfrac{59}{126}\)
* \(\Rightarrow\left(2x+\dfrac{3}{5}\right)^2=\dfrac{9}{25}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\dfrac{3}{5}=\dfrac{3}{5}\\2x+\dfrac{3}{5}=-\dfrac{3}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=0\Rightarrow x=0\\2x=-\dfrac{6}{5}\Rightarrow x=-\dfrac{3}{5}\end{matrix}\right.\)
* \(\Rightarrow-5x-1-\dfrac{1}{2}x+\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(\Rightarrow-5x-\dfrac{1}{2}x-\dfrac{3}{2}x=-\dfrac{5}{6}+1-\dfrac{1}{3}\)
\(\Rightarrow-7x=-\dfrac{1}{6}\)
\(\Rightarrow x=-\dfrac{1}{6}:7=-\dfrac{1}{42}\)
a)\(\left(3\dfrac{1}{2}+2x\right).2\dfrac{2}{3}=5\dfrac{1}{3}\)
\(\left(\dfrac{7}{2}+2x\right).\dfrac{8}{3}=\dfrac{16}{3}\)
\(\dfrac{7}{2}+2x=\dfrac{16}{3}:\dfrac{8}{3}=2\)
\(2x=2-\dfrac{7}{2}=\dfrac{-3}{2}\Rightarrow x=\dfrac{-3}{4}\)
b)\(\dfrac{3}{4}-2.\left|2x-\dfrac{2}{3}\right|=2\)
\(2.\left|2x-\dfrac{2}{3}\right|=\dfrac{3}{4}-2=\dfrac{-1}{4}\)
\(\Rightarrow\left|2x-3\right|=\dfrac{-1}{8}\)
\(\Rightarrow x\in\varnothing\)
c) Đề sai,bạn có viết chữ x đâu,đó là phép tính mà.
d)\(\left(3x-1\right)\left(\dfrac{-1}{2}x+5\right)=0\)
\(\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{-1}{2}x+5=0\Rightarrow x=10\)
e)\(\dfrac{1}{4}+\dfrac{1}{3}:\left(2x-1\right)=-5\)
\(\dfrac{1}{3}:\left(2x-1\right)=-5-\dfrac{1}{4}=\dfrac{-21}{4}\)
\(2x-1=\dfrac{1}{3}:\dfrac{-21}{4}=\dfrac{-4}{63}\)
\(\Rightarrow2x=\dfrac{59}{63}\Rightarrow x=\dfrac{59}{126}\)
g)\(\left(2x+\dfrac{3}{5}\right)^2-\dfrac{9}{25}=0\)
\(\left(2x+\dfrac{3}{5}\right)^2=0+\dfrac{9}{25}=\dfrac{9}{25}\)
\(\dfrac{9}{25}=\left(\dfrac{3}{5}\right)^2=\left(\dfrac{-3}{5}\right)^2\)
\(th1:x=0\)
\(th2:x=\dfrac{-3}{5}\)
h)\(-5\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}\left(x-\dfrac{2}{3}\right)=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(-5x+-1-\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{3}{2}x-\dfrac{5}{6}\)
\(\Leftrightarrow-5x+-1+\dfrac{5}{6}-\dfrac{1}{3}=2x\)
\(-5x+\dfrac{-1}{2}=2x\)
\(\dfrac{-1}{2}=2x+5x\)
\(\dfrac{-1}{2}=7x\Rightarrow x=\dfrac{-1}{14}\)
a)<=>\(\dfrac{\left(2x-3\right).2}{6}-\dfrac{3.3}{6}=\dfrac{5-2x}{6}-\dfrac{1.3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}=\dfrac{5-2x}{6}-\dfrac{3}{6}\)
<=>\(\dfrac{4x-6}{6}-\dfrac{9}{6}-\dfrac{5-2x}{6}+\dfrac{3}{6}=0\)
<=>\(\dfrac{4x-6-9-5+2x+3}{6}=\dfrac{4x-17}{6}=0\)
<=>\(4x-17=0\)
<=>\(4x=17\)<=>\(x=\dfrac{17}{4}\)
a)Ta thấy:
\(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)
\(=\dfrac{\left(x+a\right)-x}{x\left(x+a\right)}\)
\(=\dfrac{a}{x\left(x+a\right)}\)
\(\Rightarrowđpcm\)
b)Ta thấy:
\(\dfrac{1}{x\left(x+1\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)}-\dfrac{x\left(x+1\right)}{x\left(x+1\right)^2\left(x+2\right)}\)
\(=\dfrac{x+2}{x\left(x+1\right)\left(x+2\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)}\)
\(=\dfrac{\left(x+2\right)-x}{x\left(x+1\right)\left(x+2\right)}=\dfrac{2}{x\left(x+1\right)\left(x+2\right)}\Rightarrowđpcm\)
c)Ta thấy:
\(\dfrac{1}{x\left(x+1\right)\left(x+2\right)}-\dfrac{1}{\left(x+1\right)\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}-\dfrac{x\left(x+1\right)\left(x+2\right)}{x\left(x+1\right)^2\left(x+2\right)^2\left(x+3\right)}=\dfrac{x+3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}-\dfrac{x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{x+3-x}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}=\dfrac{3}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\Rightarrowđpcm\)
a/ \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\)
Ta có: \(\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{x+a}{x\left(x+a\right)}-\dfrac{x}{x\left(x+a\right)}\)
\(=\dfrac{\left(x-x\right)+a}{x\left(x+a\right)}\) hay \(\dfrac{a}{x\left(x+a\right)}\)
\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{x+a}=\dfrac{a}{x\left(x+a\right)}\left(đpcm\right)\)
a.\(\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{100}{99}\)
\(=\dfrac{3.4.5...100}{2.3.4...99}\)
\(=\dfrac{100}{2}=50\)
a,
\(\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\\ =\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{100}{99}\\ =\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot99}\\ =\dfrac{100}{2}=50\)
b,
\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{100}-1\right)\\ =\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{-3}{4}\cdot...\cdot\dfrac{-99}{100}\\ =\dfrac{\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-99\right)}{2\cdot3\cdot4\cdot...\cdot100}\\ =\dfrac{\left(-1\right)\left(-1\right)\left(-1\right)\cdot...\left(-1\right)}{100}\left(\text{có }99\text{ số }-1\right)\\ =\dfrac{\left(-1\right)^{99}}{100}\\ =\dfrac{-1}{100}\)
c,
\(C=\dfrac{4}{30}+\dfrac{4}{70}+\dfrac{4}{126}+...+\dfrac{4}{798}\\ =\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{399}\\ =\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{19\cdot21}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\\ =\dfrac{1}{3}-\dfrac{1}{21}\\ =\dfrac{7}{21}-\dfrac{1}{21}\\ =\dfrac{6}{21}=\dfrac{2}{7}\)
a: \(=\left(\dfrac{19}{6}-\dfrac{2}{5}\right):\left(\dfrac{29}{6}+\dfrac{7}{10}\right)\)
\(=\dfrac{19\cdot5-2\cdot6}{30}:\dfrac{290+42}{30}=\dfrac{83}{332}=\dfrac{1}{4}\)
b: \(=\dfrac{\left(\dfrac{102}{25}-\dfrac{2}{25}\right)\cdot\dfrac{17}{4}}{\left(6+\dfrac{5}{9}-3-\dfrac{1}{4}\right)\cdot\dfrac{16}{7}}\)
\(=\dfrac{4\cdot\dfrac{17}{4}}{\dfrac{16}{7}\cdot\dfrac{119}{36}}=\dfrac{17}{\dfrac{68}{9}}=17\cdot\dfrac{9}{68}=\dfrac{9}{4}\)
c: \(=\left(\dfrac{120}{60}-\dfrac{15}{60}+\dfrac{20}{60}-\dfrac{36}{60}\right):\left(\dfrac{45}{15}-\dfrac{3}{15}-\dfrac{25}{15}\right)\)
\(=\dfrac{89}{60}:\dfrac{17}{15}=\dfrac{89}{60}\cdot\dfrac{15}{17}=\dfrac{89}{68}\)
1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)
2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+.......+\left(\dfrac{1}{2}\right)^{10}\)
\(\Leftrightarrow A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+.......+\dfrac{1}{2^{10}}\)
\(\Leftrightarrow2A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^9}\)
\(\Leftrightarrow2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.........+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{10}}\right)\)
\(\Leftrightarrow A=\dfrac{1}{2}-\dfrac{1}{2^{10}}\)