Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3/2 + 3/6 + 3/12 + . . . + 3/90
= 3/1*2 + 3/2*3 + 3/3*4 + . . . + 3/9*10
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + . . . + 1/9 - 1/10
= 1/1 - 1/10 = 9/10
Vậy a = 9/10
ko chắc chắn lắm
\(\frac{3}{2}+\frac{3}{6}+\frac{3}{12}+\frac{3}{20}+...+\frac{3}{90}\)
\(=3\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=3.\left(1-\frac{1}{10}\right)=3.\frac{9}{10}\)
\(=\frac{27}{10}\)
\(B=3+3^2+3^3+...+3^{90}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{89}+3^{90}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{89}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+...+3^{89}\right)\)
\(=4\left(3+3^3+...+3^{89}\right)⋮4\)
\(B=3+3^2+3^3+...+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...\left(3^{88}+3^{89}+3^{90}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right)\left(3+3^4+...+3^{98}\right)\)
\(=13\left(3+3^4+...+3^{98}\right)⋮13\)
b,\(\frac{2}{3}\)+\(\frac{1}{3}\).(\(\frac{-2}{3}\)+\(\frac{5}{6}\)):\(\frac{2}{3}\)
=\(\frac{2}{3}\)+\(\frac{1}{3}\).(\(\frac{-4}{6}\)+\(\frac{5}{6}\)):\(\frac{2}{3}\)
=\(\frac{2}{3}\)+\(\frac{1}{3}\).\(\frac{1}{6}\).\(\frac{3}{2}\)
=\(\frac{2}{3}\)+\(\frac{1}{18}\).\(\frac{3}{2}\)
=\(\frac{2}{3}\)+\(\frac{1}{6}\).\(\frac{1}{2}\)
=\(\frac{2}{3}\)+\(\frac{1}{12}\)
=\(\frac{8}{12}\)+\(\frac{1}{12}\)
=\(\frac{9}{12}\)=\(\frac{3}{4}\)
3.Tìm x biết:
a) \(2-x=17-\left(-5\right)\)
\(2-x=22\)
\(x=2-22\)
\(x=-20\)
Vậy \(x=-20\)
b) \(2x-6=-3-\left(-7\right)\)
\(2x-6=4\)
\(2x=6+4\)
\(2x=10\)
\(x=10:2\)
\(x=5\)
Vậy \(x=5\)
c) \(\left(3x-6\right).3=3^4\)
\(\left(3x-6\right).3=81\)
\(3x-6=81:3\)
\(3x-6=27\)
\(3x=27+6\)
\(3x=33\)
\(x=33:3\)
\(x=11\)
Vậy \(x=11\)
\(S=3\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\)
\(=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=3\left(1-\dfrac{1}{10}\right)=3\cdot\dfrac{9}{10}=\dfrac{27}{10}\)