Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa: Áp dụng chứng minh \(x^2+y^2>9\)
Ta có: \(x^2+y^2-2xy=\left(x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow x^2+y^2\ge2xy\)( đpcm )
Áp dụng: Với \(xy=5\)ta có: \(x^2+y^2\ge2.5=10\)
\(\Rightarrow x^2+y^2>9\)( đpcm )
a) \(A=x^2-2.10x+100+1\)
\(A=\left(x-10\right)^2+1>=1\)với mọi x
Dấu = xảy ra khi x-10 =0
=>x=10
Min A=1 khi x=10
b) Câu b bạn viết sai đề rồi B= -x^2 +4x -3 mới làm dc
\(a,x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
\(b,x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y+z\right)\left(x-y-z\right)\)
\(2D=x^2-4xy+4y^2+x^2-12x+36+6y^2-36y+54+10\)\(2D=\left(x-2y\right)^2+\left(x-6\right)^2+6\left(y-3\right)^2+10\)
\(2D\ge10\) => D>=5 khi x=2y=6
\(F=3x^2+x+4=3\left(x^2+\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{47}{12}\)
F=\(3\left(x+\dfrac{1}{6}\right)^2+\dfrac{47}{12}\ge\dfrac{47}{12}\) khi x=-1/6
\(2E=4x^2-4xy+y^2+y^2-4y+4+3996\)
\(2E=\left(2x-y\right)^2+\left(y-2\right)^2+3996\ge3996\)
E>=1998 khi 2x=y=2
bài 4;
\(B=-3x^2+x=-3\left(x^2-\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{1}{12}\)
\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)
khi x=1/6
bài 5:
\(a,\left(x+2\right)^2=0=>x=-2\)
\(b,\left(x-6\right)^2+\left(y+1\right)^2=0\rightarrow\left\{{}\begin{matrix}x=6\\y=-1\end{matrix}\right.\)
c,\(x^2+2y^2-2xy-2x+2=0\)
\(x^2-4xy+4y^2+x^2-4x+4=0\)
\(\left(x-2y\right)^2+\left(x-2\right)^2=0\rightarrow\left\{{}\begin{matrix}x=2y\\x=2\end{matrix}\right.\)
đây nhá bạn, khá tốn time của mình
\(M=x^2+y^2-xy-2x-2y+2\)
\(\Leftrightarrow M=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\left(\frac{1}{2}x^2-2x+2\right)+\left(\frac{1}{2}y^2-2y+2\right)-2\)
\(\Leftrightarrow M=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-2\right)^2+\frac{1}{2}\left(y-2\right)^2-2\ge-2\)\(\forall\)\(x\)
"=" khi x=y=2
Vậy Min M là -2 khi x=y=2
\(M=x^2+y^2-xy-2x-2y+2\)
\(4M=4x^2+4y^2-4xy-8x-8y+8\)
\(4M=\left(4x^2-4xy+y^2\right)+3y^2-8x-8y+8\)
\(4M=\left[\left(2x-y\right)^2-2\left(2x-y\right)\times2+4\right]+3y^2-12y+4\)
\(4M=\left(2x-y-2\right)^2+3\left(y^2-4y+4\right)-8\)
\(4M=\left(2x-y-2\right)^2+3\left(y-2\right)^2-8\)
\(\Rightarrow4M\ge-8\)
\(\Leftrightarrow M\ge-2\)
Dấu "=" xảy ra khi :
\(Q=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Dấu "=" xảy ra \(< =>\left(x-\frac{3}{2}\right)^2=0< =>x=\frac{3}{2}\)
Vậy MInQ=-9/2 khi x=3/2
\(M=x^2+y^2-x+6y+10=x^2+y^2-x+6y+1+9=\left(x^2-x+1\right)+\left(y^2+6y+9\right)\)
\(=\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\right]+\left(y^2+2.y.3+9\right)=\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]+\left(y+3\right)^2=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(< =>\left(x-\frac{1}{2}\right)^2=0=>x=\frac{1}{2}\)
và \(\left(y+3\right)^2=0=>y=-3\)
Vậy minM=3/4 khi x=1/2 và y=-3
a) \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
b) \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37=100\)
c) \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4v+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
a)\(x^2y-x^3-9y+9y\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(x^2-9\right)\left(y-x\right)\)
\(=\left(x+3\right)\left(x-3\right)\left(y-x\right)\)
\(b,9x^2-1=\left(3x+1\right)\left(3x-1\right)\)
\(c,\left(x-y\right)4-4=\left(x-y-1\right)4\)
\(1,x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right).\)
\(\left(y-x\right)\left(x^2-9\right)=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
\(2,9x^2-1=\left(3x\right)^2-1^2=\left(3x+1\right)\left(3x-1\right)\)
\(3,\left(x-y\right)4-4=4\left(x-y-1\right)\)
\(4,\)\(9\left(x-y\right)^2=3^2\left(x-y\right)^2=\left(3x-3y\right)^2\)
\(5,3x^2-6ab+3b^2-12c^2???\)
\(6,x^2-25+y^2+2xy=\left(x+y\right)^2-25\)
\(=\left(x+y-5\right)\left(x+y+5\right)\)
\(=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\)
\(x^2-2xy-9+y^2=\left(x^2-2xy+y^2\right)-9=\left(x-y\right)^2-3^2=\left(x-y-3\right).\left(x-y+3\right)\)