Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
\(x^2y+x^2+xy+xy^2+xy+y^2\)
\(=\left(x^2y+xy^2\right)+\left(x^2+2xy+y^2\right)\)
\(=xy\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x+y\right)\left(xy+1\right)\)
b )
\(x^2+xy+x+xy+y+y^2\)
\(=\left(x^2+2xy+y^2\right)+\left(x+y\right)\)
\(=\left(x+y\right)^2+\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+1\right)\)
c )
\(x^2+y^2+z^2+2z\left(x+y\right)+2xy\)
\(=\left(x^2+2xy+y^2\right)+z^2+2z\left(x+y\right)\)
\(=\left(x+y\right)^2+z^2+2z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y+2z\right)+z^2\)
\(2D=x^2-4xy+4y^2+x^2-12x+36+6y^2-36y+54+10\)\(2D=\left(x-2y\right)^2+\left(x-6\right)^2+6\left(y-3\right)^2+10\)
\(2D\ge10\) => D>=5 khi x=2y=6
\(F=3x^2+x+4=3\left(x^2+\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{47}{12}\)
F=\(3\left(x+\dfrac{1}{6}\right)^2+\dfrac{47}{12}\ge\dfrac{47}{12}\) khi x=-1/6
\(2E=4x^2-4xy+y^2+y^2-4y+4+3996\)
\(2E=\left(2x-y\right)^2+\left(y-2\right)^2+3996\ge3996\)
E>=1998 khi 2x=y=2
bài 4;
\(B=-3x^2+x=-3\left(x^2-\dfrac{2x}{6}+\dfrac{1}{36}\right)+\dfrac{1}{12}\)
\(B=-3\left(x-\dfrac{1}{6}\right)^2+\dfrac{1}{12}\le\dfrac{1}{12}\)
khi x=1/6
bài 5:
\(a,\left(x+2\right)^2=0=>x=-2\)
\(b,\left(x-6\right)^2+\left(y+1\right)^2=0\rightarrow\left\{{}\begin{matrix}x=6\\y=-1\end{matrix}\right.\)
c,\(x^2+2y^2-2xy-2x+2=0\)
\(x^2-4xy+4y^2+x^2-4x+4=0\)
\(\left(x-2y\right)^2+\left(x-2\right)^2=0\rightarrow\left\{{}\begin{matrix}x=2y\\x=2\end{matrix}\right.\)
đây nhá bạn, khá tốn time của mình
Sửa: Áp dụng chứng minh \(x^2+y^2>9\)
Ta có: \(x^2+y^2-2xy=\left(x-y\right)^2\ge0\forall x,y\)
\(\Rightarrow x^2+y^2\ge2xy\)( đpcm )
Áp dụng: Với \(xy=5\)ta có: \(x^2+y^2\ge2.5=10\)
\(\Rightarrow x^2+y^2>9\)( đpcm )
a) \(A=x^2+2xy+y^2-4x-4y+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
b) \(B=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(=7^2+2.7+37=100\)
c) \(C=x^2+4y^2-2x+10+4xy-4y\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
\(=5^2-2.5+10=25\)
a) \(A=x^2+2xy+y^2-4x-4v+1\)
\(=\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=3^2-4.3+1=-2\)
1) \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)
\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
\(\frac{x^2+\left(x-z\right)^2}{y^2}hay x^2+\frac{\left(x-z\right)^2}{y^2}\)
\(a,x^2-x-y^2-y\)
\(=\left(x^2-y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
\(b,x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y+z\right)\left(x-y-z\right)\)