Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)...... , \(\frac{1}{97.98}-\frac{1}{98.99}=\frac{2}{97.98.99}\)
vậy 2 xA = \(\frac{2}{1.2.3.}\) -\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)-.\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\).....-\(\frac{1}{97.98}\)+\(\frac{1}{98.99}\)
=1/3-1/6+1/(98.99) =1/6 +1/(98.99)
=> A = 1/12+\(\frac{1}{2.98.99}\)
sud kênh Mik ủng hộ với tên kênh là M.ichibi
kênh làm về MINECRAFT
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(A=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{99\cdot100}\right)\)
tự tính
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(=1-\frac{1}{2020}< 1\)
Vậy \(A< 1\left(đpcm\right)\)
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}-\frac{1}{50}\)
\(\Leftrightarrow B< \frac{1}{4}+\frac{1}{2}\)
\(\Leftrightarrow B< \frac{3}{4}\left(đpcm\right)\)
Dưới tử mik tính ra thôi. VD: 12 . 22 = 1.4; 22.32 = 4.9 các tử sau tương tự
\(\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
= \(\frac{4-1}{1.4}+\frac{9-4}{4.9}+\frac{16-9}{9.16}+...+\frac{100-81}{81.100}\)
= \(\frac{4}{1.4}-\frac{1}{1.4}+\frac{9}{4.9}-\frac{4}{4.9}+\frac{16}{9.16}-\frac{9}{9.16}\)+.....+\(\frac{100}{81.100}-\frac{81}{81.100}\)
= \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)
.........................................................
a) Ta có : \(\frac{-3}{100}< 0< \frac{2}{3}\)
\(\Rightarrow\frac{-3}{100}< \frac{2}{3}\)
b) Ta có : \(\frac{267}{268}< 1< \frac{1347}{1343}\)
\(\Rightarrow\frac{267}{268}< \frac{1347}{1343}\)
\(\Rightarrow\frac{267}{-268}< \frac{-1347}{1343}\)
c) Ta có : \(\frac{2017.2018-1}{2017.2018}=\frac{2017.2018}{2017.2018}-\frac{1}{2017.2018}=1-\frac{1}{2017.2018}\)
\(\frac{2018.2019-1}{2018.2019}=\frac{2018.2019}{2018.2019}-\frac{1}{2018.2019}=1-\frac{1}{2018.2019}\)
mà \(2017.2018< 2018.2019\)
\(\Rightarrow\frac{1}{2017.2018}>\frac{1}{2018.2019}\)
\(\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)
\(\Rightarrow\frac{2017.2018-1}{2017.2018}< \frac{2018.2019-1}{2018.2019}\)
d) Ta có : \(\frac{2017.2018}{2017.2018+1}=\frac{2017.2018+1}{2017.2018+1}-\frac{1}{2017.2018+1}=1-\frac{1}{2017.2018+1}\)
\(\frac{2018.2019}{2018.2019+1}=\frac{2018.2019+1}{2018.2019+1}-\frac{1}{2018.2019+1}=1-\frac{1}{2018.2019+1}\)
mà \(2017.2018+1< 2018.2019+1\)
\(\Rightarrow\frac{1}{2017.2018+1}>\frac{1}{2018.2019+1}\)
\(\Rightarrow1-\frac{1}{2017.2018+1}< 1-\frac{1}{2018.2019+1}\)
\(\Rightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}\)
\(B=\frac{1}{1.2}=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(B=\left(1-\frac{1}{2018}\right)-\left(\frac{1}{2}-\frac{1}{2}\right)-...-\left(\frac{1}{2017}-\frac{1}{2017}\right)\)
\(B=1-\frac{1}{2018}=\frac{2017}{2018}\)
Vậy \(B=\frac{2017}{2018}\)