K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: 3a+1<3b+1

\(\Leftrightarrow3a< 3b\)

hay a<b

 

29 tháng 3 2021

câu b nx bn ơi

22 tháng 4 2017

a) Vì a < b

=> 3a < 3b (nhân hai vế với 3 > 0)

=> 3a + 1 < 3b + 1 (cộng hai vế với 1) (đpcm)

b) Vì a < b

=> -2a > -2b (nhân hai vế với -2 < 0)

=> -2a – 5 > -2b – 5 (cộng hai vế với -5) (đpcm)

4 tháng 6 2016

Dễ thấy với a,b >0 thì (a+b)/2 ≥ √ab <=> 1/(a+b) ≤ 1/4 (1/a +1/b) 
Áp dụng bất đẳng thức Cauchy ta được 
1/(a+2b+3c)=1/[(a+c)+2(b+c)]≤ 1/4[1/(a+c)+1/2(b+c)] (lại áp dụng tiếp được) 
≤ 1/16a+1/16c+1/32b+1/32c 
=1/16a+1/32b+3/32c 
Trường hợp này dấu "=" xảy ra <=> a+c=2(b+c);a=c;b=c <=> c= 0 mâu thuẩn giả thiết 
Do đó dấu "=" không xảy ra 
Thế thì 1/(a+2b+3c)<1/16a+1/32b+3/32c (1) 
Tương tự 1/( b+2c+3a)<1/16b+1/32c+3/32a (2) 
1/ ( c+2a+3b) < 1/16c+1/32a+3/32b (3) 
Cộng (1)(2)(3) cho ta 
1/( a+2b+3c) + 1/( b+2c+3a) + 1/ ( c+2a+3b) <(1/16+1/32+3/32)(1/a+1/b+1/c) 
=3/16*(ab+bc+ca)abc= 3/16

tk nha mk trả lời đầu tiên đó!!!

16 tháng 1 2019

1. \(a< b\Leftrightarrow2a< 2b\Leftrightarrow2a+1< 2b+1\)

\(a< b\Leftrightarrow-3a>-3b\Leftrightarrow-3a>-3b-1\)

2.\(a>b>0\Leftrightarrow a.\frac{1}{ab}>b.\frac{1}{ab}\Leftrightarrow\frac{1}{b}>\frac{1}{a}\Leftrightarrow\frac{1}{a}< \frac{1}{b}\)

7 tháng 3 2019

1 ) Do \(3a-b=5\Rightarrow b=3a-5\)

Ta có : \(A=\frac{5a-b}{2a+5}-\frac{3b-3a}{2b-5}=\frac{5a-3a+5}{2a+5}-\frac{3\left(3a-5\right)-3a}{2\left(3a-5\right)-5}=\frac{2a+5}{2a+5}-\frac{6a-15}{6a-15}=1-1=0\)

Vậy \(A=0\)

2 ) \(P=x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

Để P là số nguyên tố thì \(Ư\left(P\right)=\left\{1;P\right\}\)

Vì x dương \(\Rightarrow x^2+x+1>x^2-x+1\)

\(\Rightarrow x^2-x+1=1\)

\(\Rightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=1\end{matrix}\right.\)

Vậy x = 1 thì P là số nguyên tố

7 tháng 3 2019

Cảm ơn ạ

23 tháng 4 2018

1 . a) Thực hiện so sánh 3a và 3b, 3a+1 và 3b+1 từ đó rút ra điêu cần chứng minh

b) Thực hiện so sánh -2a và -2b, -2a - 5 và -2b -5 từ đó rút ra điêu cần chứng minh

Cậu tự trình bày nhé ? Giảng sơ sơ thế là hiểu ấy

21 tháng 9 2019

Dùng điểm rơi a=b=1

Gọi M là biểu thức đầu bài ta có

\(M=\frac{3}{2}\sqrt{\left(3a+1\right).4}+\sqrt{\left(3b+1\right).4}\le\frac{3}{4}\left(3a+5\right)+\frac{1}{2}\left(3b+5\right)\)

\(=\frac{9a+6b}{4}+\frac{25}{4}=\frac{15}{4}+\frac{25}{4}=10\)

22 tháng 4 2017

a) Từ a + 5 < b + 5

=> a + 5 + (-5) < b + 5 + (-5) (cộng hai vế với -5)

=> a < b

Giải bài 13 trang 40 SGK Toán 8 Tập 2 | Giải toán lớp 8

8 tháng 4 2021

a)từ a+5<b+5 ta cộng -5 vào 2 vế được a<b

b)từ -3a>-3b ta nhân 2 vế với -1/3 (tức là chia cả 2 vế cho -3) và -3a . -1/3< -3b . -1/3 sẽ được a<b