K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

Bạn làm nhiều bài tập rồi quen dần với mấy dạng này ,chứ chỉ ra cách nào thì khó lắm 

Thường thì biến đổi về. Dạng bình phương (cũng có những cách khác nhé)

Ví du:tim giá trị nhỏ nhất của:x^2+2x+2=(x+1)^2+1 lớn hơn hoặc bằng 1 với mọi x thuộc R

20 tháng 3 2016

an may tinh la ra

NV
23 tháng 4 2022

ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)

\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)

\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)

\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)

\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)

24 tháng 4 2022

-Em cảm ơn thầy nhiều ạ! 

7 tháng 6 2017

\(3x^2-6x+1\)

\(=3\left(x^2-2x+\frac{1}{3}\right)\)

\(=3\left(x-1\right)^2-\frac{2}{3}\)

vì \(3\left(x-2\right)^2\ge0\)nên \(3\left(x-1\right)^2-\frac{2}{3}\ge\frac{2}{3}\)

vậy GTNN của biểu thức =2/3

minh tống ơi chắc là sai đấy

7 tháng 6 2017

sai cũng đc cảm ơn bạn nhiều lắm

NV
26 tháng 7 2021

Câu này em đã hỏi rồi

1.Tìm GTNN của Bthức : B= 4x2- 6x+1 : (x-2)2    với x ≠ 22. Tìm GTLN của Bthức: C= x2 + 4x - 14  : x2 -2x +1  với x≠ 1gi... - Hoc24

21 tháng 10 2021

a: Ta có: \(A=2x^2-8x+1\)

\(=2\left(x^2-4x+\dfrac{1}{2}\right)\)

\(=2\left(x^2-4x+4-\dfrac{7}{2}\right)\)

\(=2\left(x-2\right)^2-7\ge-7\forall x\)

Dấu '=' xảy ra khi x=2

21 tháng 10 2021

bạn làm rõ ra dc ko mik ko hiểu

 

6 tháng 10 2016

\(P=\frac{2}{-4x^2+8x-5}=\frac{2}{-\left(4x^2-8x+5\right)}\)

\(=\frac{2}{-\left(4x^2-8x+4+1\right)}\)\(=\frac{2}{-4\left(x+1\right)^2-1}\)

\(\ge\frac{2}{-1}=-2\)\(\Rightarrow P\ge-2\)

Dấu = khi \(x=-1\)

Vậy MinP=-2 khi x=-1

7 tháng 10 2016

Cảm ơn bạn nhiều nha ! :)

21 tháng 4 2019

Max : với x = 0 thì \(A=\frac{x^2}{x^4+x^2+1}=0\)

với x khác 0 thì x4 + 1 \(\ge\)2x2 > 0 nên x4 + x2 + 1 \(\ge\)3x2 

\(\Rightarrow\)\(A=\frac{x^2}{x^4+x^2+1}\le\frac{x^2}{3x^2}=\frac{1}{3}\)

Vậy max A = \(\frac{1}{3}\)\(\Leftrightarrow\)x = 1 hoặc -1

Min : Ta có : x4 + x2 + 1 = ( x2+ 1 )2 - x2 = ( x2 - x + 1 ) ( x2 + x + 1 ) > 0 

\(\Rightarrow\)\(A\ge0\)( vì x2 \(\ge\)0 )